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ВВЕДЕНИЕ
В конце XIX века Джеймс Клерк Максвелл обобщил накопленные к то-

му времени экспериментальные данные об электромагнитном взаимодействии
и сформулировал свою знаменитую систему уравнений, претерпевшую впо-
следствии лишьформальные изменения и ставшую основой классической элек-
тродинамики. Далее в работах Фейнмана, Швингера, Томонаги, Дайсона и др.
получила развитие квантовая электродинамика (КЭД). Многие её предсказа-
ния, уточняющие и расширяющие классическую теорию, не раз подтвержда-
лись экспериментально. КЭД предсказывает самодействие электромагнитного
поля в вакууме, полностью отсутствующее в классической электродинамике.
Самодействие является следствием радиационных поправок, включающих в
себя вклады от виртуальных электрон-позитронных пар.

На умеренных частотах чисто квантовый эффект фотон-фотонного рассея-
ния может быть описан в терминах эффективной теории Эйлера-Гейзенберга
[1, 2]. Другие эффекты нелинейной электродинамики включают двойное ва-
куумное лучепреломление и вакуумный дихроизм электромагнитной волны на
интенсивном классическом фоне [3, 4]. Помимо вклада теории Эйлера-Гейзен-
берга, эффективное самодействие электромагнитного поля возникает вследствие
присутствия в полном лагранжиане скалярных или псевдоскалярных полей, вза-
имодействующих с электромагнитным полем [5—7].

Однако до сих пор не было зарегистрировано взаимодействие реальных фо-
тонов, предсказываемое эффективной теорией Эйлера-Гейзенберга. Причина
кроется в крайней малости константы связи самодействия электромагнитно-
го поля. Тем не менее, было предпринято несколько попыток протестировать
его нелинейную динамику в сверхсильных электромагнитных полях. Наиболее
близко к явлению подошёл эксперимент по поляризации интенсивных лазер-
ных полей «PVLAS» [8, 9]. Результирующая чувствительность к самодействию
электромагнитного поля оказалась всего лишь на порядок меньше, чем требо-
валось согласно предсказаниям эффективной теории Эйлера-Гейзенберга [9].

Современные технологии приблизили к воплощению очередную возмож-
ность регистрации нелинейной динамики электромагнитного поля. Новая мето-
дика предполагает использование высокоинтенсивных мод в резонаторах вме-
сто лазерных полей. Идея такого эксперимента была предложена ещё в 2000-х
годах [10, 11]: одиночный сверхпроводящий резонатор возбуждается двумя раз-
личными гармониками большой амплитуды — модами «накачки» известных
частот. При наличии самодействия ожидается генерация третьей «сигнальной»
моды, чья частота является простой линейной комбинацией частот исходных
мод. В силу чрезвычайной малости эффекта, сигнальная мода может быть за-
детектирована только после резонансного усиления в полости. Кроме резонанс-
ного усиления, необходимо генерировать гармонику высшей частоты, как мож-
но дальше отстоящей от основных частот (частот мод накачки). Это позволит
настроить узкую полосу пропускания детектора на сигнальную частоту, чтобы
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эффективно выделить её из фона мод накачки.
Аналогичное применение одиночного сверхпроводящего резонатора для по-

иска псевдоскалярных аксионоподобных частиц было предложено в [12]1: в
случае тяжёлой новой частицы, (когда её масса сильно превышает2 частоты мод
накачки), проявление новой физики сводится к эффективному самодействию
электромагнитного поля и интерферирует с самодействиемЭйлера-Гейзенберга.
В частности, обнаружение более сильного самодействия, чем в предсказании
свободной КЭД с радиационными поправками, может свидетельствовать о на-
личии в природе аксионоподобных частиц. Таким образом, генерация высших
гармоник за счёт нелинейной электродинамики актуальна не только для про-
верки предсказаний КЭД, но и для поиска новой физики в скалярном секторе.

Как упоминалось выше, перспективный эксперимент по детектированию
самодействия электромагнитного поля в одиночном сверхпроводящем резона-
торе рассматривается в работах [10—12]. В них не приводится явное решение
нелинейных волновых уравнений, описывающих резонансное усиление сиг-
нальной моды. В последних статьях теоретически исследуется генерация выс-
ших гармоник в одномерном [17] и двумерном [18] резонаторах. Данные ре-
зультаты основаны на явном решении нелинейных уравнений поля и приводят
к необычному заключению: сигнальная мода с утроенной частотой не усили-
вается резонансно.

Целями данного исследования являются проверка и уточнение вышеупомя-
нутых результатов, их обобщение на трёхмерную модель резонатора, а также
поиск причины и объяснение контринтуитивного поведения электромагнитно-
го поля в резонаторах (отсутствие генерации некоторых высших частот). Для
достижения этих целей и теоретического описания генерации высших гармо-
ник в нелинейной электродинамике Эйлера-Гейзенберга с позиций классиче-
ской и квантовой теорий поля ставятся следующие задачи: вывод поправок к
уравнениямМаксвелла и волновым уравнениям на классическом уровне (в лаг-
ранжевом формализме), развитие универсального для различных резонаторов
классического подхода к поиску резонансно усиливаемых сигнальных мод (по
теории возмущений на основе методов математической физики), применение
разработанного алгоритма к изучению нескольких конфигураций одномерного
и трёхмерного резонаторов; операторное квантование свободного электромаг-
нитного поля в резонаторах и расчёт амплитуд этих же процессов на квантовом
уровне (через S-матрицу), а также финальное сравнение результатов классиче-
ской и квантовой теорий по их предсказаниям равновесной энергии сигнальных
мод в резонаторе, и сравнение с результатами сторонних работ.

Структурно данная работа состоит из трёх частей: классическое описание
(раздел 1.), включающее в себя вывод поправок к уравнениям поля (часть 1.1.) и

1Обобщение на скалярные частицы и дополнительный член, нарушающий CP-симметрию, рассмотрены в
[13].

2В случае же малой массы аксионоподобной частицы актуален похожий эксперимент, но с двумя резонато-
рами, предложенный в [14—16].
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решение нелинейных уравнений по теории возмущений (часть 1.2.); квантовое
описание (раздел 2.), содержащее операторное квантование электромагнитно-
го поля и расчёт амплитуд процессов через S-матрицу; сравнение и обсуждение
результатов в выводах и заключении. Классический и квантовый формализмы
применяются в случаях одномерного и трёхмерного резонаторов с двумя вари-
антами возбуждения каждого.

Обзор литературы
Основы классической электродинамики изложены в трудах Максвелла [19],

а также в многочисленных учебных пособиях, например, в [20—23]. Квантовая
электродинамика чаще рассматривается как составляющая квантовой теории
поля [24—26]. Эффективная теория Эйлера-Гейзенберга выводится в ориги-
нальных работах [1, 2], а более обширный исторический обзор также даётся
в [27]. Внимание другим эффектам нелинейной электродинамики, таким как
двойное вакуумное лучепреломление и вакуумный дихроизм электромагнит-
ной волны на интенсивном классическомфоне, уделяется в работах [3, 4]. Нели-
нейное поведение электромагнитного поля, индуцированное наличием скаляр-
ных или псевдоскалярных полей в полном лагранжиане, рассматривается, в
частности, в [5—7]. Эксперимент «PVLAS», приблизившийся к регистрации
нелинейного поведения электромагнитного поля, описан в [8, 9]. Идея другого
эксперимента, использующего одиночный сверхпроводящий резонатор, пред-
лагается в работах [10, 11] и исследуется теоретически в низших размерностях
[17, 18]. В целях поиска аксионоподобных частиц рассматриваются аналогич-
ные схемы опытов [12, 14—16].
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1. Классическое описание
Впервой части работы генерация высших гармоник рассматривается с пози-

ций классической теории поля. Сначала в лагранжевом формализме выводятся
из теории Эйлера-Гейзенберга нелинейные поправки к уравнениям Максвелла
и волновым уравнениям (часть 1.1.). Затем разрабатывается общий для резона-
торов разных размерностей подход к решению полученных уравнений (часть
1.2.). Применение теории возмущений и методов математической физики поз-
воляет сформулировать критерий резонанса сигнальных мод, который впослед-
ствии проверяется для одномерного (часть 1.3.) и трёхмерного (часть 1.4.) ре-
зонаторов. Анализ нескольких конфигураций мод накачки— способов возбуж-
дения резонаторов— приводит к неожиданным промежуточным заключениям,
представленным в части 1.5.

1.0. Система единиц
Вданном исследовании используется «естественная» рационализированная

система единиц, в которой кладутся безразмерными и единичными скорость
света c = 1, приведённая постоянная Планка ℏ = 1 и постоянная Больцмана
kB = 1. Универсальной единицей измерения в такой системе является едини-
ца измерения энергии, по умолчанию равная 1 ГэВ. При такой договорённости,
время и длина измеряются в обратных единицах ГэВ−1, масса, частота и сама
энергия — в единицах ГэВ. Силовые характеристики и напряжённости полей
в вакууме — в единицах ГэВ2. Выбор ℏ = 1 обеспечивает, в частности безраз-
мерность функционала действия, а размерность плотности функции Лагранжа
обратна размерности пространства-времени.

Фактор 4π в электродинамических формулах присутствует в законе Кулона,
определяя тем самым постоянную тонкой структуры αe := e2

4π ≃ 1
137 , и отсут-

ствует в лагранжиане свободного электромагнитного поля L0(x) = −1
4FµνF

µν .

1.1. Поправки к уравнениям поля
Согласно теории Эйлера-Гейзенберга, эффективный лагранжиан электро-

магнитного поля в приближении слабых полей (|E|, |B| ≪ m2
e/e ∼ 109 Тл)

даётся выражением:

L = L0 + LEH = −1

4
F + κ

(
F2 + βG2

)
, κ =

α2
e

90m4
e

, β =
7

4
. (1)

Лагранжиан (1) сконструирован из инвариантов электромагнитного поля:

F(x) := FµνF
µν = −2

(
E2 −B2

)
,

G(x) := FµνF̃
µν =

1

2
ϵµνλρFµνFλρ = −4(E,B),

(2)
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сохраняющихся при преобразованиях Лоренца. Константа связи κ содержит
четвёртую степень массы электронаme в знаменателе, что есть «визитная кар-
точка» эффективной неперенормируемой теории, применимой до характерного
энергетического масштаба ∼ me. В эксперименте с электромагнитным полем
амплитуды |B| < 1Тл связь крайне слаба: κB2 < 10−24. Коэффициент β в точ-
ности равен 7

4 в теории Эйлера-Гейзенберга, но ввиду гипотетического вклада
массивных аксионоподобных частиц, упоминавшегося во введении, целесооб-
разно не сужать общность рассмотрения.

Следуя лагранжеву формализму, будем варьировать действие по 4-потен-
циалу электромагнитного поляAµ(x), чтобы получить уравнения поля с кубич-
ной по Fµν поправкой (так как член LEH ∝ F 4

µν):

S =

∫
L d4x ⇒ δS =

∫
δL d4x =

∫ (
−1

4
δF + 2κ(F δF + βG δG)

)
d4x

δF = δ(FµνF
µν) = 2F µν δ(∂µAν − ∂νAµ) = 4F µν∂µ(δAν)

δG =
1

2
δ
(
ϵµνλρFµνFλρ

)
= 2F̃ µν δ(∂µAν − ∂νAµ) = 4F̃ µν∂µ(δAν)

δS =

∫ (
−F µν + 8κ

(
FF µν + βGF̃ µν

))
∂µ(δAν) d

4x

δS =

∮ (
−F µν + 8κ

(
FF µν + βGF̃ µν

))
δAν

∣∣∣xµ=+∞

xµ=−∞
d3Σµ −

−
∫

∂µ

(
−F µν + 8κ

(
FF µν + βGF̃ µν

))
δAν d4x

Впоследнем равенстве после интегрирования по частям возник поверхностный
интеграл. Подынтегральное выражение в нём обращается в ноль в подстановке
в силу того, что мы решаем задачу с «закреплёнными концами» — в терми-
нах вариации 4-потенциала δAν (t = ±∞, r) = 0, и с граничным условием
Fµν(x) → 0 при x → ∞.

По принципу наименьшего (точнее, стационарного) действия потребуем вы-
полнения δS = 0 независимо от произвольной вариации δAν (x), удовлетворя-
ющей условиями вариационной задачи. Тогда по основной лемме вариацион-
ного исчисления (лемме Лагранжа) получим первую пару уравнений эволюции
электромагнитного поля:

δS = 0 ⇒ ∂µ

(
−F µν + 8κ

(
FF µν + βGF̃ µν

))
= 0

ν = 0 : ∂µF
µ0 = ∂µ

(
8κ
(
FF µ0 + βGF̃ µ0

))
ν = j : ∂µF

µj = ∂µ

(
8κ
(
FF µj + βGF̃ µj

))
Вторая пара уравнений следует, как и в классической электродинамике, из са-
мого определения тензора электромагнитного поля:

Fµν := ∂µAν − ∂νAµ ⇒ ∂µFνρ + ∂νFρµ + ∂ρFµν = 0 ∀ µ, ν, ρ

7



Далее нам будет удобно работать с трёхмерными величинами в декартовом
базисе {e1, e2, e3}, поэтому вновь воспользуемся определением тензора элек-
тромагнитного поля, чтобы перейти к трёхмерной форме записи:

F i0 = E · ei, F̃ i0 = B · ei, F ij = −ϵijkB · ek, F̃ ij = +ϵijkE · ek
ν = 0 : ∇ · E = ∇ · (8κ(FE+ βGB)) =: −∇ ·P
ν = j : −∂tE+∇×B = ∇× (8κ(FB− βGE)) + ∂tP =: ∂tP−∇×M

Вторая пара уравнение остаётся ровно такой же, как в классической электро-
динамике. Объединяя обе пары уравнений, собираем систему уравнений Макс-
велла с поправками Эйлера-Гейзенберга:

∇×B =
∂E

∂t
+

[
∂P

∂t
−∇×M

]
,

∇× E = −∂B

∂t
,

∇ · E = [−∇ ·P],

∇ ·B = 0,
(3)

где функции P(t, r) иM(t, r) вычисляются следующим образом:

P = 16κ
[(
E2 −B2

)
E+ 2β(E,B)B

]
,

M = 16κ
[(
E2 −B2

)
B− 2β(E,B)E

]
.

(4)

Можно заметить, что слагаемые, взятые в квадратные скобки в уравнени-
ях Максвелла (3), легко трактовать, как объёмные плотности токов и зарядов,
возникающие вследствие квантовых поправок. В связи с этой интерпретацией
напрашивается сравнение вакуума с материальной средой, и векторP называют
вектором поляризации вакуума, а векторM— вектором магнетизации (намаг-
ничения) вакуума. Как и следовало ожидать, полученные поправки кубичны по
полям (4). Такая нелинейность приводит к нарушению принципа суперпозиции
и кубичному смешению частот распространяющихся в вакууме волн. Однако
стоит отметить, что плоская волна и даже суперпозиция коллинеарно распро-
страняющихся плоских волн по-прежнему является точным решением (3), так
как для неё выполнено F = 0, G = 0, и квантовые поправки исчезают.

Наконец, получиммодифицированные волновые уравнения. Для этого стан-
дартно подействуем оператором ∇× на уравнения в первом столбце системы
(3), упрощая выражения снова с помощью равенств (3):{

∇× (∇× E) = −∂t∇×B,

∇× (∇×B) = ∇× ∂tE+∇× ∂tP−∇× (∇×M),{
∇(∇ · E)−∆E = −∂2

tE− ∂2
tP+∇× ∂tM,

∇(∇ ·B)−∆B = −∂2
tB+∇× ∂tP−∇(∇ ·M) + ∆M,

□E = ∇× ∂M

∂t
+∇(∇ ·P)− ∂2P

∂t2
,

□B = ∇× ∂P

∂t
−∇(∇ ·M) + ∆M.

(5)
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1.2. Метод поиска резонирующих мод
Выведенные волновые уравнения (5) нелинейны, так как их правые части

состоят из производных от векторов поляризации и магнетизации вакуума, за-
висящих, вообще говоря, кубичным образом от полей (4). Как уже упомина-
лось, точным решением будет суперпозиция плоских волн, чьи волновые век-
торы коллинеарны. Однако нас интересует случайF ≠ 0 и особенно G ̸= 0, что-
бы в эксперименте могла проявиться нелинейная динамика электромагнитного
поля. Поэтому будем решать нелинейные уравнения (5) по теории возмущений,
используя себе во благо чрезвычайную малость самодействия поля в условиях
лабораторного эксперимента (κB2 < 10−24 при |B| < 1 Тл).

Рассмотрим эволюцию электромагнитного поля в резонаторе. Пусть в нём
поддерживаются какие-либо собственные колебания большой амплитуды (мо-
ды накачки) Epump,Bpump. Суммарные поля E,B будут подчиняться нелиней-
ным уравнениям (5). Для развития теории возмущений запишем суммарные по-
ля в виде E = Epump+Esig, B = Bpump+Bsig, где слагаемые Esig,Bsig отвечают
сигнальным модам и являются малыми возмущениями на фоне мод накачки.
После подстановки указанного разложения в уравнения (5), они очевидным об-
разом линеаризуются, и мы получаем в нулевом и первом порядках1 теории
возмущений:

Нулевой порядок: □Epump = 0, □Bpump = 0,

Первый порядок: □Esig = Fel(t, r), □Bsig = Fmg(t, r), (6)

где правые части Fel и Fmg определяются по формулам (7):

Fel(t, r) := ∇× ∂Mpump

∂t
+∇(∇ ·Ppump)− ∂2Ppump

∂t2
,

Fmg(t, r) := ∇× ∂Ppump

∂t
−∇(∇ ·Mpump) + ∆Mpump.

(7)

В нулевом порядке мы получаем классические волновые уравнения на моды
накачки Epump и Hpump, поэтому их эволюция стандартна и известна. Так как
правые части уравнений в первом порядке рассчитываются, как явные функции
(7) векторов Ppump = P(Epump,Bpump) иMpump = M(Epump,Bpump), то функции
Fel, Fmg оказываются известнымифункциями координат и времени. Физически
ситуация такова, что вакуум поляризуется и намагничивается модами накачки
гораздо сильнее, чем сигнальными модами, поэтому можно считать, что моды
накачки суть внешние поля с точки зрения эволюции сигнальных мод. Итак,
эволюция мод накачки считается классической, а поведение сигнальных мод
диктуется линейными неоднородными волновыми уравнениям (6), которые мы
будем для краткости называть сигнальными уравнениями.

1Учёт высших порядков теории возмущений не имеет практического смысла, так как они дают поправки в ам-
плитуду по величине< 10−48 от мод накачки, что гарантирует их ненаблюдаемость в современных лабораторных
условиях.
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Применяя классические методы математической физики [23], будем решать
линейное неоднородное волновое уравнение для произвольного сигнального
поля f(t, r) в резонаторе D с границей ∂D. Для поля f(t, r) имеются гранич-
ные условия, определяемые физической моделью резонатора. Будем работать с
моделью идеально проводящих стенок, которая накладывает условие нормаль-
ности электрического поля к поверхности резонатора n(r) × E(t, r) = 0 и
условие ортогональности магнитного поля n(r) · B(t, r) = 0 к нормали n во
всех граничных точках r ∈ ∂D в произвольный момент времени t ∈ R. Пер-
вое условие запрещает электрическому полю возбуждать поверхностный ток в
идеально проводящих стенках; в противном случае он быстро вызвал бы такое
перераспределение заряда, которое погасило бы тангенциальную компоненту
электрического поля. Второе условие ограничивает силовые линии магнитного
поля внутри резонатора, запрещая им проникать наружу.

Естественно, модель идеально проводящих стенок лишь ограниченно при-
менима в эксперименте. Малое, но конечное сопротивление стенок приводит к
затратам энергии поля на разогрев резонатора и тем самым ограничивает его
добротность Q < ∞. Современная лабораторная техника [28] достигает доб-
ротности Q ⩽ 1011 в сверхпроводящих радиочастотных резонаторах. Учтём
наличие диссипации, добавляя в левую часть уравнений «трение» в виде фено-
менологического члена с первой производной ΓΩ∂t, где Γ = 1/Q ≪ 1. В каче-
стве характерной частоты Ω будем брать частоту сигнальной моды ωsig, так как
нас интересует добротность именно в этом диапазоне частот. Неоднозначность
выбора частоты Ω можно спрятать в величину добротности, которая фиксиру-
ется оценочно с точностью до порядка. Тогда возбуждение сигнального поля
f(t, r) из нулевого начального состояния будет описываться задачей:

(□+ ΓΩ∂t)f(t, r) = F(t, r), r ∈ D, t > 0,

f(0, r) = 0, r ∈ D,

a(r) · f(t, r) = 0, r ∈ ∂D, t > 0.

(8)

Пусть область D при поставленных граничных условиях имеет полную (в
гильбертовом пространстве) ортогональную систему собственныхфункций. Ор-
тогональность определяется выбранным скалярным произведением гильбер-
това пространства (A,B) =

∫
D A(r) · B(r) dr. Система собственных функ-

ций резонатора {Ek(r)}∞k=1 с собственными значениями ω2
k, находится из задачи

Штурма-Лиувилля: {(
∆+ ω2

k

)
Ek(r) = 0, r ∈ D,

a(r) · Ek(r) = 0, r ∈ ∂D.
(9)

В последующих разделах будут явно даны системы собственных функций ре-
зонаторов, в которых изучается генерация высших гармоник.

Решение f(t, r) исходной задачи (8) можно искать методом разделения пе-
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ременных (методом Фурье) в виде разложения по собственным функциям:

f(t, r) =
∞∑
k=1

fk(t)Ek(r). (10)

Подставим анзац (10) в уравнение задачи (8) и спроецируем левую и правую ча-
сти уравнения на собственную функцию En(r), чтобы получить обыкновенные
дифференциальные уравнения на коэффициенты разложения fn(t):

(
∂2
t −∆+ ΓΩ∂t

) ∞∑
k=1

fk(t)Ek(r) = F(t, r)

∞∑
k=1

f̈k(t)Ek(r)− fk(t) ∆Ek(r)︸ ︷︷ ︸
=−ω2

kEk(r)

+ΓΩḟk(t)Ek(r)

 = F(t, r)

∞∑
k=1

(
f̈k(t) + ΓΩḟk(t) + ω2

kfk(t)
)
Ek(r) = F(t, r)

∣∣∣ · En(r)

f̈n(t) + Γḟn(t) + ω2
nfn(t) = Fn(t), Fn(t) :=

(F,En)

∥En∥2
. (11)

Далее нас интересует возможность резонансного усиления сигнальной мо-
ды f(t, r), что эквивалентно наличию резонанса в каком-либо из уравнений (11).
Предположим,Fn(t) (проекция неоднородностиF(t, r) наn-ю собственнуюфунк-
цию) содержит исследуемую гармонику, чья частотаΩ совпадает с собственной
частотой ωn. Тогда данная гармоника будет «генерироваться», то есть резонанс-
но усиливаться в Q раз по амплитуде:

Fn(t) = ane
iωnt ⇒ возьмём анзац fn(t) = Ane

iωnt

An(iωn)
2eiωnt + ΓΩ(iωn)e

iωnt + ω2
nAne

iωnt = ane
iωnt

∣∣∣ · e−iωnt

An =
an

iΓΩωn
= an

−iQ

ω2
n

⇒ |An| ≫
|an|
ω2
n

Если теперь представить правую часть Fn(t) в виде ряда или интеграла Фурье
— разложения в спектр по времени, то можно сформулировать критерий гене-
рации сигнальной моды на частоте ωsig:

I. частота ωsig попадает на спектр резонатора (∃ m ∈ N : ωsig = ωm),

II. временно́й спектр проекции Fm(t) содержит частоту ωsig (в составе ряда
или интеграла Фурье).

Этот критерий работает для любого резонатора, чья физическая модель удо-
влетворяет математическим требованиям применимости метода Фурье. Если
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моды накачки, служащие источником возбуждения F(t, r), зависят от време-
ни гармонически, то их пространственные проекции Fm(t) также будут гармо-
ничны по времени, и условие II сведётся к поиску слагаемых sin(ωsigt) и/или
cos(ωsigt) в составе Fm(t).

Выработанный подход используется в последующих разделах классической
части исследования. Сначала выбираются моды накачки Epump и Bpump — как
правило, в виде линейной комбинации собственных функций изучаемого резо-
натора. Затем по заданным модам накачки рассчитываются правые части Fel и
Fmg. Потом проверяется условие I резонанса: среди сигнальных частот, возни-
кающих вследствие смешивания частот накачки, выбираются гармоники с ча-
стотами ωsig = ωm, попадающие на спектр резонатора. Далее вычисляются со-
ответствующие проекции Fm(t) и проверяется условие II резонанса. Выполне-
ние критерия служит конструктивным доказательством теоретической возмож-
ности генерации гармоники ωsig; для доказательства невозможности приходит-
ся перебирать всевозможные сигнальные частоты и искать нарушение условий
критерия резонанса.

1.3. Резонатор-отрезок
Рассмотрим генерацию высших гармоник в простейшей одномерной моде-

ли резонатора — отрезке, ограниченном двумя идеально проводящими пласти-
нами, чьи линейные размеры много больше длины резонатора Lx. Основным
допущением одномерной модели является зависимость электромагнитного по-
ля только от одной пространственной координаты и времени. Это немедленно
приводит к ортогональности электрического и магнитного полей к оси резона-
тора (см. рис. 1).

Рисунок 1 — Одномерный резонатор с идеально проводящими стенками.

В самом деле, если Epump = Epump(t, x), то ∂tB
pump
x = −(∇ × Epump)x =

= ∂zE
pump
y (t, x) − ∂yE

pump
z (t, x) = 0, откуда ∀ t Bpump

x = Bpump
x (x) = 0, так как

мы предполагаем резонатор не намагниченным. Аналогично из зависимости
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Bpump = Bpump(t, x) следует, что ∂tE
pump
x = (∇ × Bpump)x = 0, и в любой мо-

мент времени Epump
x = Epump

x (x) = 0 в предположении электрически нейтраль-
ного резонатора. Наконец, равенство нулю продольных компонент мод накачки
обеспечивает такое же поведение векторов поляризации и магнетизации вакуу-
ма (4), которые, в свою очередь, транслируют это свойство на неоднородности
(7) линеаризованных сигнальных уравнений.

Итак, пусть резонатор D — интервал (0, Lx). Условие n × E = 0 в гра-
ничных точках «закрепляет концы» электрического поля, то есть приводит к
задаче Штурма-Лиувилля с однородными граничными условиями Дирихле на
собственные функции En(x). Граничное условие n · B = 0 выполнено тожде-
ственно в силу вышеупомянутой поперечности магнитного поля, поэтому зада-
ча на магнитные собственные функции Mn(x) имеет однородные граничные
условия Неймана. С учётом классических уравнений Максвелла, действующих
для мод накачки, система собственных функций одномерного резонатора при-
нимает следующий вид1:{

En(x) = sin(knx) ey
Mn(x) = cos(knx) ez

, ωn = kn =
πn

Lx
, n ∈ N, (12)

где ey, ez —орты координатных осейOy,Oz соответственно. Функции (12) об-
ладают свойством ортогональности:

(En,Em) = δnm
Lx

2
, (Mn,Mm) = δnm

Lx

2
.

Физический смысл собственных функций (12) прост: моды резонатора суть
пространственные части стоячих плоских волн, устанавливающихсямежду дву-
мя идеально проводящими (зеркальными) пластинами. Чтобы поля, сконструи-
рованные умножением (12) на временную экспоненту eiωnt, образовывали плос-
кую волну, надо добавлять фазу i перед магнитным полем (либо фазу −i перед
электрическим):{

E = En(x) e
iωnt,

B = iMn(x) e
iωnt,

⇒

∇× E =
∂ sin(knx)

∂x
eiωnt · ez = −iMn

∂eiωnt

∂t
= −∂B

∂t
,

∇×B = −i
∂ cos(knx)

∂x
eiωnt · ey = En

∂eiωnt

∂t
=

∂E

∂t
.

Наличие у электромагнитного поля двух степеней свободы приводит к двум
независимым поляризациям мод накачки. Специфичным для отрезка являет-
ся то, что векторы поляризаций поля могут быть получены друг из друга по-
воротом вокруг оси симметрии резонатора. Следовательно, при суперпозиции
нескольких мод накачки их плоскости поляризации могут составлять произ-
вольный угол друг с другом.

1Для математической полноты системе (12) не хватает нулевой моды (с частотой ω0 = 0), однако мы не
рассматриваем статические поля, предполагая резонатор электрически нейтральным и не намагниченным.
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1.3.1. Одномодовый режим

Будем возбуждать одномерный резонатор линейно поляризованными мода-
ми накачки на какой-либо одной собственной частотеωn (одномодовый режим):{

Epump(t, x) = B0Re
{
−iEn(x) e

iωnt
}
= B0 sin(knx) sin(ωnt) ey,

Bpump(t, x) = B0Re
{
Mn(x) e

iωnt
}
= B0 cos(knx) cos(ωnt) ez.

(13)

В такой конфигурации инвариант F ̸= 0, в то время как G ≡ 0. Применяя
алгоритм раздела 1.2., подставим (13) в (4) и (7), осуществив тривиальные, хотя
и громоздкие вычисления1. В результате найдём неоднородности (7) волновых
уравнений для возбуждаемых сигнальных мод:

Fel(t, x) = 8κB3
0ω

2
n[2 sin(knx) sin(ωnt) + sin(3knx) sin(ωnt)− 3 sin(knx) sin(3ωnt)]ey,

Fmg(t, x) = 8κB3
0ω

2
n[2 cos(knx) cos(ωnt) + 3 cos(3knx) cos(ωnt)− cos(knx) cos(3ωnt)]ez.

(14)

Проанализируем неоднородности (14) согласно выработанному критерию
резонанса. Временной спектр содержит только две гармоники с сигнальными
частотами ωsig ∈ {ωn, 3ωn}. Очевидно, обе частоты попадают на спектр ре-
зонатора, например, 3ωn = ω3n, поэтому условие I резонанса выполнено. Для
проверки условия II резонанса спроецируем функции Fel,Fmg на собственные
функции с номерами n и 3n, отвечающие найденным сигнальным частотам:

F el
n (t) =

(Fel,En)

∥En∥2
=

2

Lx

Lx∫
0

F el(t, x) sin(knx) dx = 8κB3
0ω

2
n[2 sin(ωnt)− 3 sin(3ωnt)],

Fmg
n (t) =

(Fmg,Mn)

∥Mn∥2
=

2

Lx

Lx∫
0

Fmg(t, x) cos(knx) dx = 8κB3
0ω

2
n[2 cos(ωnt)− cos(3ωnt)],

F el
3n(t) =

(Fel,E3n)

∥E3n∥2
=

2

Lx

Lx∫
0

F el(t, x) sin(k3nx) dx = 8κB3
0ω

2
n[sin(ωnt)],

Fmg
3n (t) =

(Fmg,M3n)

∥M3n∥2
=

2

Lx

Lx∫
0

Fmg(t, x) cos(k3nx) dx = 8κB3
0ω

2
n[3 cos(ωnt)].

В последующих разделах результат вычисления проекций будет организо-
ван в таблицы вида 1. Столбцы нумеруются индексами собственных функций,
на которые проецируются неоднородности Fel и Fmg, отвечающие строкам таб-
лицы. Каждая клетка таблицы описывает спектральный состав проекции на
собственную функцию, соответствующую данному столбцу. Информация о не-
нулевых амплитудах гармоник не отражена в таблице, но и несущественна для
проверки критерия резонанса, так как опущенные амплитуды являются вели-
чинами одного порядка малости.

1Здесь и далее символьные вычисления [29] проведены в системе компьютерной алгебры «wxMaxima
21.02.0».

14



n 3n

Fel ωn, ω3n ωn

Fmg ωn, ω3n ωn

Таблица 1 — Проверка критерия резонанса для одномерного резонатора в од-
номодовом режиме.

Итак, в случае возбуждения резонатора-отрезка в одномодовом режиме име-
ет место резонансное усиление сигнальной частоты ωn, которая сохранилась
во временном спектре проекций на собственные функции с индексом n. Един-
ственная высшая гармоника утроенной частоты 3ωn не генерируется1, так как
для неё не выполнено второе условие критерия резонанса. Она «не выживает»
в скалярных произведениях с собственными функциями E3n,M3n.

1.3.2. Двухмодовый режим

Теперь изучим возбуждение резонатора-отрезка линейно поляризованными
модами накачки на двух частотах: ωn и ωp (двухмодовый режим). Так как от-
резок обладает вращательной симметрией вокруг оси Ox, допустим наличие
произвольного угла α между плоскостями поляризации мод:Epump(t, x) = B0 Re

{
−iEn(x) e

iωnt − iR̂xαEp(x) e
iωpt
}
,

Bpump(t, x) = B0 Re
{
Mn(x) e

iωnt + R̂xαMp(x) e
iωpt
}
,

R̂xα =

1 0 0

0 cosα − sinα

0 sinα cosα

 . (15)

В выбранной конфигурации оба инварианта (2) отличны от нуля, и вычисле-
ния становятся слишком объёмными, чтобы полностью выписывать здесь их
результаты. Аналогично предыдущему разделу по формулам (4) и (7) на модах
накачки (15) рассчитываются неоднородности Fel,Fmg сигнальных уравнений.
Так как поправки (4) кубично нелинейны по полям накачки, в спектральном
составе неоднородностей можно ожидать рождение не более, чем следующих
сигнальных частот:

ωsig ∈ {ωn, ωp, 3ωn, 3ωp, 2ωn ± ωp, 2ωp ± ωn}. (16)

Все сигнальные частоты (16) попадают на спектр резонатора-отрезка, пото-
му что зависимость собственной частоты от индекса линейна ωn = πn

Lx
. Значит,

условие I критерия резонанса выполняется для каждой потенциально рождае-
мой гармоники.

1Данный вывод согласуется с независимым результатом [17].
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Далее требуется спроецировать неоднородности на собственные функции
с индексами n, p, 3n, 3p, 2n ± p, 2p ± n и проверить, сохранились ли соот-
ветствующие сигнальные частоты в спектрах проекций. Спектральный состав
проекций приведен в таблице 2:

n 3n 2n− p 2n+ p

Fel

ωn, ω2p±n, ω3n ωn ωp, ω2n+p ωp, ω2n−p

Fmg

p 3p 2p− n 2p+ n

Fel

ωp, ω2n±p, ω3p ωp ωn, ω2p+n ωn, ω2p−n

Fmg

Таблица 2—Проверка критерия резонанса для одномерного резонатора в двух-
модовом режиме.

Из таблицы 2 легко видеть, что условие II критерия резонанса выполняет-
ся только для сигнальных частот ωn и ωp, совпадающих с частотами накачки.
Значит, и в случае двухмодового режима возбуждения резонатора-отрезка гене-
рация высших гармоник за счёт самодействия электромагнитного поля невоз-
можна.

1.4. Резонатор-параллелепипед
Изучим генерацию высших гармоник в более реалистичной модели трёх-

мерного резонатора—параллелепипеда (см. рис. 2) с длинами сторонLx, Ly, Lz

(объём V = LxLyLz) и идеально проводящей поверхностью.

Рисунок 2 — Трёхмерный резонатор с идеально проводящими стенками.
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В следующих подразделах нам понадобится система собственных функций
резонатора. Электрические и магнитные собственные функции E(r) и M(r)
области D = (0, Lx) × (0, Ly) × (0, Lz) при условиях идеально проводящих
стенок находятся из задач Штурма-Лиувилля:{

(∆ + ω2)E(r) = 0, r ∈ D,

n(r)×E(r) = 0, r ∈ ∂D,

{
(∆ + ω2)M(r) = 0, r ∈ D,

n(r) ·M(r) = 0, r ∈ ∂D,
(17)

при дополнительном условии ∇ × Eω = ωMω, которое обеспечивает необ-
ходимую для плоской волны связь между электрическим и магнитным полем.
Благодаря этому дополнительному условию плоские стоячие волны могут быть
сконструированы умножением функций E , iM на временную экспоненту eiωt.

Классические решения задач (17) находятся методом разделения пространст-
венных переменных r = (x, y, z), в результате чего трёхмерная задача разбива-
ется на прямое произведение трёх одномерных. Получаемые одномерные зада-
чи имеют однородные граничные условия Дирихле либо Неймана, и их реше-
ниями являются синусы либо косинусы соответственно. Следовательно, соб-
ственные функции E(r) иM(r) нумеруются тройкой индексов n, p, q и зависят
от координат тригонометрически.

Далее восстанавливается связь∇×Eω = ωMω путём выбора амплитуд от-
дельных компонент вектор-функций Ei,Mj, i, j ∈ {x, y, z}. Спецификой парал-
лелепипеда является способ реализации в нём двух степеней свободы, заложен-
ных в природе электромагнитного поля. Наличие двух независимых поляриза-
ций выражается в двоякой возможности удовлетворить связь∇×Eω = ωMω и
порождает две подсистемы собственных функций: ТЕ-моды и ТМ-моды. Клас-
сификация ведётся относительно произвольно выбранной оси Oz: электриче-
ское поле ТЕ-мод имеет ETEz (r) = 0, в то время как магнитное поле ТМ-мод
подчинено условиюMTM

z (r) = 0 в любой точке r ∈ D.
Итак, в граничных условиях идеально проводящих стенок система собствен-

ныхфункций резонатора-параллелепипеда распадается на два подмножества—
ТМ- и ТЕ-моды [23, сс. 25–28]:

ETM
npq(r) =

√
4(2− δq0)

ωnpq



kxkz√
k2x + k2y

cos(kxx) sin(kyy) sin(kzz)

kykz√
k2x + k2y

sin(kxx) cos(kyy) sin(kzz)

−
√

k2x + k2y sin(kxx) sin(kyy) cos(kzz)


,

MTM
npq(r) =

∇×ETM
npq(r)

ωnpq
, n, p ∈ N, q ∈ N0,

(18)
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ETE
npq(r) =

√
4(2− δn0 − δp0)


+

ky√
k2x + k2y

cos(kxx) sin(kyy) sin(kzz)

− kx√
k2x + k2y

sin(kxx) cos(kyy) sin(kzz)

0

 ,

MTE
npq(r) =

∇×ETE
npq(r)

ωnpq
, n, p ∈ N0, q ∈ N (но n+ p > 0),

(19)

при следующих обозначениях и вытекающих свойствах:

kx(n) =
πn

Lx
, ky(p) =

πp

Ly
, kz(q) =

πq

Lz
, ωnpq = π

√
n2

L2
x

+
p2

L2
y

+
q2

L2
z

,(
ETM
npq,ETM

n′p′q′
)
=
(
MTM

npq,MTM
n′p′q′

)
= δnn′ δpp′ δqq′ V,(

ETE
npq,ETE

n′p′q′
)
=
(
MTE

npq,MTE
n′p′q′

)
= δnn′ δpp′ δqq′ V,(

ETE
npq,ETM

n′p′q′
)
=
(
MTE

npq,MTM
n′p′q′

)
= 0.

Последнее скалярное произведение, понимаемое как интеграл по объёму резо-
натора, говорит об ортогональности ТМ- и ТЕ-подсистем собственных функ-
ций. Нормировочные множители

√
4(2− δq0) и

√
4(2− δn0 − δp0) в (18) и (19)

требуются вследствие того, что квадрат нормы косинуса нулевого аргумента,
возникающего при наличии нулевых индексах мод, в два раза больше, чем квад-
рат нормы осциллирующего косинуса. Важно помнить, что в ТЕ-модах индексы
n и p не могут обращаться в ноль одновременно.

Фактически, электрические собственные функции из (18) и (19) могут слу-
жить базисом для пространственного разложения вектор-потенциала электро-
магнитного поляA(t, r) в калибровке Кулона, по которому электрическое и маг-
нитное поле рассчитываются стандартно E = −∂tA, B = ∇ × A (в резона-
торе нет свободных зарядов). Во второй части данного исследования вектор-
потенциал и будет раскладываться по функциямAλ

npq(r) ≡ Eλ
npq(r), где индекс

поляризации λ ∈ {TM, TE}.

1.4.1. Одномодовый режим

Будем поддерживать в резонаторе-параллелепипеде одну моду накачки ча-
стоты ωnpq. Деление собственных колебаний на ТЕ- и ТМ-моды в параллелепи-
педе условно: одно и то же колебание может классифицироваться, как ТМ-мода
относительно оси Oz, и как ТЕ-мода относительно другой оси. Поэтому выбе-
рем моду TMnpq, не ограничивая общности:{

Epump(t, r) = B0Re
{
ETM
npq(r) e

iωnpqt
}
,

Bpump(t, r) = B0Re
{
iMTM

npq(r) e
iωnpqt

}
.

(20)
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При модах накачки (20) инварианты F ̸= 0, G = 0 аналогично одномодово-
му возбуждению резонатора-отрезка. Вновь рассчитаем по формулам (4) и (7)
неоднородности сигнальных уравнений.

В отличие от одномерного резонатора, в параллелепипеде кубичная нели-
нейность диктует независимые законы смешивания как для самих частот, так и
для отдельных компонент волновых векторов. В результате одна мода накачки
ωnpq устанавливает круг поиска сигнальных мод со следующими частотами и
волновыми векторами:

ωsig ∈ {ωnpq, 3ωnpq = ω3n,3p,3q}
ksig ∈ {knpq, k3n,pq kn,3p,q, knp,3q, k3n,3p,q, k3n,p,3q, kn,3p,3q, k3n,3p,3q}

(21)

Очевидно, что на спектр попадают обе смешанные частоты ωsig, и условие
I критерия резонанса выполнено для них обеих. Условие II критерия резонанса
требует вычислить проекции функций Fel,Fmg на моды (n, p, q) и (3n, 3p, 3q).
Проецирование на промежуточные моды из списка (21), у которых есть и утро-
енные, и исходные индексы, не требуется, так как частоты со смешанными ин-
дексами всё равно отсутствуют среди двух возможных ωsig. Расчёт необходи-
мых проекций представлен в таблице 3:

TM-моды: n, p, q 3n, 3p, 3q

Fel,Fmg ωnpq, 3ωnpq ωnpq

TE-моды: n, p, q 3n, 3p, 3q

Fel,Fmg ωnpq, 3ωnpq ωnpq

Таблица 3 — Проверка критерия резонанса для трёхмерного резонатора в од-
номодовом режиме.

По спектральному составу проекций, отражённому в таблице 3, заключаем,
что резонансно усиливается только основная частота ωnpq, генерации высших
гармоник по-прежнему нет. Стоит отметить, что проекции на некоторые проме-
жуточные моды, чьи частоты лежат между основной ωnpq и утроенной ω3n,3p,3q,
оказываются также ненулевыми, что даёт надежду найти резонирующую сиг-
нальную частоту в двухмодовом режиме возбуждения параллелепипеда.

1.4.2. Двухмодовый режим

Перейдём к изучению двухмодового возбуждения резонатора-параллелепи-
педа. Для этого зафиксируем две моды накачки, одну ТМ- и одну ТЕ-моду для
определённости. Выбранная система собственных функций позволяет удобно
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записать выражения для электрического и магнитного полей:

Epump(t, r) = B0Re
{
ETM
n1p1q1

(r) eiω1t + ETE
n2p2q2

(r) eiω2t
}
,

Bpump(t, r) = B0Re
{
iMTM

n1p1q1
(r) eiω1t + iMTE

n2p2q2
(r) eiω2t

}
,

(22)

где введены краткие обозначения для частот мод накачки: ω1 := ωn1p1q1, а также
ω2 := ωn2p2q2. Согласно алгоритму поиска резонирующих сигнальных мод, под-
ставим моды накачки (22) в формулы (7) для расчёта правых частей сигнальных
уравнений.

Кубичное смешивание двух основных частот приводит к бо́льшему разно-
образию сигнальных частот, чем в одномодовом режиме, и снова к независимо-
му смешиванию отдельных компонент сигнальных волновых векторов. После
кубичного смешивания величины ωsig, ksig,x, ksig,y, ksig,z могут принимать значе-
ния, не более чем из следующих множеств:

ωsig ∈ { ω1, ω2, 2ω1 ± ω2, 2ω2 ± ω1, 3ω1, 3ω2 }, (23)
ksig,x ∈ { k1x, k2x, 2k1x ± k2x, 2k2x ± k1x, 3k1x, 3k2x },
ksig,y ∈ { k1y, k2y, 2k1y ± k2y, 2k2y ± k1y, 3k1y, 3k2y },
ksig,z ∈ { k1z, k2z, 2k1z ± k2z, 2k2z ± k1z, 3k1z, 3k2z }.

(24)

Список (23) определяет, какие частоты должны быть проверены по крите-
рию резонанса. Условие I критерия резонанса априори выполнено для частот
ω1, ω2, 3ω1, 3ω2, а комбинационные частоты 2ω1 ± ω2, 2ω2 ± ω1 уже не всегда
попадают на спектр резонатора. Комбинационные частоты со знаком «−» мо-
гут попасть на спектр либо при условии k1 ∥ k2, либо при точной настройке
геометрии параллелепипеда (такой пример разбирается в разделе 1.4.3.).

Для анализа комбинационных частот со знаком «+» полезно применить нера-
венство треугольника:

|ksig| = ωsig = 2ω1+ω2 = 2|k1|+ |k2| ⩾ |2k1+k2| =
√ ∑

i=x,y,z

(2k1,i + k2,i)2 (25)

Неравенство (25) свидетельствует, что для попадания частоты 2ω1+ω2 на спектр
либо должно выполняться k1 ∥ k2, либо должна найтись компонента под номе-
ром i такая, что ksig,i > 2k1,i + k2,i. Согласно списку (24), это возможно, только
если ksig,i = 3max(k1,i, k2,i). Отсюда следует вывод (назовём его леммой), что в
случае k1 ∦ k2 критерий резонанса для комбинационной частоты со знаком «+»
может выполниться только тогда, когда она входит в состав временного спектра
проекции на моду с хотя бы одним утроенным индексом.

Убедившись, что у каждой из сигнальных частот списка (23) есть шанс по-
пасть на спектр, проверим для них условие II критерия резонанса. Однако, нам
придётся сначала сократить алгоритм поиска резонанса, так как в случае двух
произвольных мод TMn1p1q1 и TEn2p2q2 проецирование неоднородностей Fel,
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Fmg на всевозможные моды, скомбинированные по списку (24), оказывается че-
ресчур ресурсозатратен в современных системах компьютерной алгебры.

В усечённой версии метода поиска резонирующих гармоник будем решать
не всю систему векторных сигнальных уравнений (6), а только два скалярных
уравнения на третьи компоненты сигнальных полей Esig

z и Bsig
z . Это возмож-

но благодаря линейности уравнений (6), а также конкретному виду (18), (19)
собственных функций параллелепипеда, позволяющему в некоторых случаях
судить о поведении компонент x, y по эволюции компоненты z. Например, ес-
ли в результате проверки критерия резонанса окажется, что компонента Esig

z

определённой сигнальной ТМ-моды не усиливается, это будет свидетельство-
вать о том, что и компоненты Esig

x , Esig
y этой ТМ-моды не растут по амплитуде

(в противном случае росла бы и Esig
z , так как амплитуды отдельных компонент

жёстко связаны внутри формулы (18)).
В остальном усечённый алгоритм полностью повторяет исходную схему

разделения переменных: поляEsig
z (r) иBsig

z (r) раскладываются по собственным
функциям Eλ

z (r) иMλ
z (r) соответственно; затем выводятся обыкновенные диф-

ференциальные уравнения второго порядка на временные коэффициенты раз-
ложения; критерий резонанса формулируется без изменений. Техническим от-
личием является то, что вычисление проекций теперь существенно менее тру-
доёмко:

Fm(t) =
(F el

z , Eλ
z )

∥Eλ
z ∥

2 =
1

∥Eλ
z ∥

2

∫
D

F el
z (t, r)Eλ

z (r) dr ,

так как не требует интегрирования компонент F el
x,y, и вдобавок компонента F el

z

оказывается компактнее, чем F el
x,y.

Традиционно, отразим спектральный состав вычисленных проекций в таб-
лице 4:

Моды:

n1

p1

q1

3n1

p1

q1

n1

3p1

q1

n1

p1

3q1

n1

3p1

3q1

3n1

p1

3q1

3n1

3p1

q1

3n1

3p1

3q1

F el
z на TM

ω1, 3ω1, 2ω2 + ω1, 2ω2 − ω1

ω1, 3ω1 ω1

Fmg
z на TE ω1, 3ω1 ω1 — —

(продолжение таблицы на следующей странице)

Знаки «±» в таблице 4 не коррелированы друг с другом и используются для
объединения схожих колонок с целью экономии места. Для краткости опущена
также зеркально симметричная таблица, получаемая взаимной заменой индек-
сов 1 ↔ 2 повсюду.
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Моды:

2n2 ± n1

p1

q1

n1

2p2 ± p1

q1

n1

p1

2q2 ± q1

2n2 ± n1

2p2 ± p1

q1

2n2 ± n1

p1

2q2 ± q1

n1

2p2 ± p1

2q2 ± q1

2n2 ± n1

2p2 ± p1

2q2 ± q1

F el
z на TM

ω1, 2ω2 + ω1, 2ω2 − ω1

Fmg
z на TE

Таблица 4—Проверка критерия резонанса для трёхмерного резонатора в двух-
модовом режиме.

Содержимое таблицы 4 надо трактовать, как «ограничение сверху» на воз-
можные спектры проекций, возникающих при модах накачки общего вида. В
важном частном случаеk1 ∥ k2 амплитудыперед гармониками с подчёркнутыми
комбинационными частотам обращаются в ноль, запрещая тем самым долго-
жданный резонанс. В оставшемся случае k1 ∦ k2 следует вспомнить лемму,
сформулированную несколькими абзацами выше. Согласно лемме, гармоника
с комбинационной частотой 2ω2 + ω1 имеет шанс резонировать, только если
она сохраняется в спектре проекции на моду с хотя бы одним утроенным ин-
дексом. Однако таблица 4 показывает, что комбинационная частота 2ω2 + ω1

полностью отсутствует в спектрах проекций на моды, имеющие утроенные ин-
дексы. Это доказывает отсутствие резонанса на частоте 2ω2+ω1 (и аналогично
2ω1 + ω2). После этого остаётся единственный шанс генерации новой частоты:
в случае k1 ∦ k2 надо подобрать такие длины сторон параллелепипеда, чтобы
подчёркнутая частота 2ω2−ω1 попала на спектр и не исчезла из последней части
таблицы 4. Возможности генерации сигнальной гармоники с частотой 2ω2−ω1

посвящается раздел 1.4.3.
В полной аналогии с двухмодовым возбуждением одномерного резонатора,

безусловный резонанс имеет место только для основных частот ω1, ω2. Гармо-
ники с чисто утроенными частотами 3ω1, 3ω2 остаются подавлены независимо
от настройки резонатора.

1.4.3. Частный случай

До сих пор исследовались моды накачки достаточно общего вида, чтобы
показать, что генерация высших гармоник неосуществима в широком классе
конфигураций возбуждения резонаторов. Теперь рассмотрим частный случай
мод накачки, конструктивно доказывающий теоретическую возможность резо-
нансного усиления комбинационной частоты 2ω011 − ω110:

Epump(t, r) = B0Re
{
ETM
110(r) e

iω110t + ETE
011(r) e

iω011t
}
,

Bpump(t, r) = B0Re
{
iMTM

110(r) e
iω110t + iMTE

011(r) e
iω011t

}
.

(26)
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Действуя по не усечённому исходному алгоритму раздела 1.2., рассчитаем на
модах накачки (26) неоднородности сигнальных уравнений по формулам (7).
И снова в силу кубичного характера нелинейности, стоит ожидать появление
только частот вида (23), где ω1 = ω011 и ω2 = ω110.

Вычислим проекции неоднородностей Fel, Fmg на все моды, чьи волновые
векторыможно составить из компонент вида (24), и занесём спектры ненулевых
проекций в таблицу 5:

TM: 110 130 310 330 112 132 211 231

Fel

ω110, 3ω110, 2ω011 ± ω110 ω110, 3ω110 ω110 ω110, 2ω011 ± ω110 ω011, 2ω110 ± ω011

Fmg

TE: 011 031 013 033 112 132 211 231

Fel

ω011, 3ω011, 2ω110 ± ω011 ω011, 3ω011 ω011 ω110, 2ω011 ± ω110 ω011, 2ω110 ± ω011

Fmg

Таблица 5—Проверка критерия резонанса для трёхмерного резонатора в двух-
модовом режиме возбуждения ТМ011+ТЕ110.

Как обычно, безусловно резонируют только основные частоты ω110 и ω011. В
согласии с предыдущим разделом, усиление гармоники с частотой 2ω011 + ω110

не достигается, так как для неё не выполнено условие I критерия резонанса:
2ω011 + ω110 ̸= ω130, ω132, ω231. Однако оказывается, что условие попадания сиг-
нальной частоты ωsig = 2ω011 − ω110 на спектр можно удовлетворить точной
настройкой геометрии резонатора:

2ω011 − ω110 = ω130 ⇐ Lx = Ly =
Lz

r
, r =

(√
5− 2

) 1
2 ≃ 0.49 (27)

В конфигурации (27) сигнальная частота ωsig попадает на спектр, причём на ча-
стоту именно той ТМ130-моды, в спектре проекции на которую она сохраняется
согласно таблице 5. Таким образом, выполнены оба условия критерия резонан-
са, и возможность генерации высшей гармоники (ω130 > ω110, ω011) доказана
конструктивно.

Метод разделения переменных позволяет легко восстановить явный вид сге-
нерированной сигнальной моды:Esig(t, r) = Bsig

0 Re
{
ETM
130(r) e

i(ω130t+π)
}
,

Bsig(t, r) = Bsig
0 Re

{
iMTM

130(r) e
i(ω130t+π)

}
,

Bsig
0 = G0

π2κB3
0Q

(ω130Lz)2
, (28)
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где амплитуда Bsig
0 сигнального поля включает в себя коэффициент:

G0(r, β) =
4
(
4 + r

√
2(1 + r2) + r2

)
− 4βr

(√
2(1 + r2)3 + (3 + r2)r

)
1 + r2

. (29)

Кубичный характер самодействия электромагнитного поля отражается в про-
порциональности сигнальной амплитуды третьей степени амплитуды мод на-
качки Bsig

0 ∝ κB3
0 . Метод резонансного усиления увеличивает сигнальную ам-

плитуду в количество раз, численно равное добротности резонатора Bsig
0 ∝ Q.

Наконец, геометрический коэффициентG0 полностью задаётся длинами сторон
резонатора (параметр r), а также соотношением β между инвариантами элек-
тромагнитного поля в составе лагранжиана Эйлера-Гейзенберга.

Для сравнения полученного классического результата с квантовым описа-
нием (часть 2.), оценим среднее равновесное число квантов электромагнитного
поля в сигнальной моде (28). Это можно сделать, интегрируя по объёму резона-
тора отношение плотности электромагнитной энергии к энергии одного такого
кванта:

N class
sig :=

∫
D

E2
sig(t, r) +B2

sig(t, r)

2ℏω130
dr =

(Bsig
0 )2V

2ω130
=

G2
0κ

2Q2B6
0L

4
z

2π10
5
2r7

. (30)

Для получения численного результата, подставим в формулу (30) следующие
характерные значения параметров конфигурации резонатора и константы κ, β
из теории Эйлера-Гейзенберга:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q = 1010

B0 = 0.1Тл ≃ 6.93 · 10−17 ГэВ2

Lz = 20 см ≃ 1.01 · 1015 ГэВ−1

κ = α2
e

90m4
e
≃ 8.68 · 106 ГэВ−4

β = 7
4

r =
(√

5− 2
) 1

2 ≃ 0.486

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N class
sig ≃ 55фотонов
ω130 ≃ 2.4ГГц
Bsig

0 ≃ 1.1 · 10−16 Тл
(Esig

0 ≃ 3.4 · 10−8 В/м)
G2

0

2π10
5
2r7

≃ 3.333

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1.5. Подытог

В классической части исследования из эффективного лагранжиана Эйлера-
Гейзенберга были выведены нелинейные поправки к уравнениям Максвелла и
волновым уравнениям электромагнитного поля. Для анализа скорректирован-
ных волновых уравнений в резонаторе с идеально проводящими стенками был
развит общий подход к поиску резонансных решений, основанный на методе
разделения переменных (методе Фурье) в рамках первого порядка теории воз-
мущений по константе связи. Сформулированный критерий резонанса приме-

24



нялся к двум моделям резонаторов, возбуждаемых в одно- и двухмодовом ре-
жимах.

Обсудим полученные результаты с позиции эксперимента. Целью возмож-
ного опыта является детектирование самодействия электромагнитного поля и
измерение его величины. Для этого резонатор возбуждается модами накачки
высокой интенсивности, которые благодаря нелинейному самодействию рож-
дают сигнальные моды. Сигнальные моды суть искомое отклонение эволюции
электромагнитного поля от классической электродинамики Максвелла. Так как
эффект чрезвычайно слаб в лабораторных условиях, для регистрации сигналь-
ные моды необходимо усиливать резонансно. Однако, детектирование даже ре-
зонансно усиленного искажения амплитуды Bsig

0 ∼ 10−16 Тл на фоне поля на-
качки с амплитудой B0 ∼ 0.1 Тл не представляется возможным напрямую. По-
этому практический интерес имеет генерация высших гармоник, чья частота
ωsig будет как можно дальше отстоять от основных частот возбуждения. Тогда
появится возможность настроить узкую полосу пропускания детектора на це-
левую сигнальную частоту, эффективно фильтруя её на фоне мод накачки.

Как было показано в классической части работы, генерация высших гармо-
ник не осуществима в одно- и двухмодовом режимах возбуждения одномерного
резонатора, а также с помощью монохроматического возбуждения резонатора-
параллелепипеда. При двухмодовом возбуждении трёхмерного резонатора выс-
шие гармоники так же почти все подавлены, за исключением комбинационной
частоты ω130 = 2ω011 − ω110. При точной настройке резонатора для неё откры-
вается возможность резонансной генерации, причём данная мода по частоте
превышает основные частоты возбуждения в полтора – два раза:

ω130

ω110
≃ 2.2,

ω130

ω011
≃ 1.4 (при r2 =

√
5− 2).

Получается, что классическое описание делает контринтуитивное предска-
зание: несмотря на кубичный характер нелинейности, генерация самой полез-
ной высшей гармоники с утроенной частотой не происходит ни в одной из рас-
смотренных конфигураций! Помимо этого неожиданного утверждения, пред-
сказанная генерация комбинационной частоты со знаком «−» встречает труд-
ности при попытке её интерпретации с квантовой точки зрения. На уровне оди-
ночных фотонов процесс типа 3 → 1, а именно:

2ω011 + ω110 −̸→ ω130,

запрещён законом сохранения энергии. Тем не менее такая схема генерации
предсказывается классическим описанием, причём как чуть ли не единственно
реализуемая. Альтернативный разрешённый процесс (2 → 2, с «перекинутым»
в правую часть фотоном):

2ω011 −→ ω130 + ω110
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иллюстрировал бы схему одномодовой генерации (с одноймодой накачкиTE011),
невозможность которой уже доказана.

Неожиданность предсказания, сделанного в рамках классического подхода,
и поднятый вопрос по его квантовой интерпретации побуждают изучить генера-
цию высших гармоник в формализме квантовой теории поля, чему посвящена
вторая часть данного исследования.
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2. Квантовое описание
Во второй части работы генерация высших гармоник изучается с позиций

квантовой теории поля. Сначала, при «выключенном» самодействии, кванту-
ется свободное электромагнитное поле в резонаторах (раздел 2.1.). Отдельно
производится квантование свободного поля в одномерном резонаторе (подраз-
дел 2.1.1.) и в трёхмерном резонаторе (подраздел 2.1.2.), описываются векторы
состояний поля (подраздел 2.1.3.). Далее изучается самодействие электромаг-
нитного поля по теории возмущений в формализме S-матрицы (раздел 2.2.).
Производится расчёт матричных элементов для квантовых процессов, анало-
гичных схемам генерации, которые были рассмотрены в классической части
исследования. Наконец, в разделе с выводами исследования проводится сравне-
ние полученных ранее классических результатов с квантовыми расчётами и да-
ётся интерпретация последних, которая объясняет отсутствие генерации опре-
делённых высших гармоник и рождение комбинационной сигнальной частоты
со знаком «−».

2.1. Свободное электромагнитное поле
Для нужд данного исследования требуется квантовая теория электромагнит-

ного поля в резонаторе D, занимающем ограниченную область пространства.

L0(x) = −1

4

(
Fµν(x)

)2
, t ∈ R, r ∈ D.

Техника квантования свободного поля в объёме конечных размеров во многом
аналогична хрестоматийному квантованию поля во всём пространстве. Одна-
ко наличие граничных условий всё же вносит ряд особенностей и заслуживает
специального рассмотрения в данной работе.

Проведение эксперимента с электромагнитным полем в резонаторе не пред-
полагает движения с релятивистскими скоростями. В связи с этим нет необхо-
димости всюду соблюдать явную Лоренц-ковариантность выкладок. В частно-
сти, это позволяет зафиксировать удобную калибровку Кулона∇ ·A(t, r) = 0,
где A(t, r) — вектор-потенциал электромагнитного поля. Условие отсутствия
свободных зарядов в резонаторе разрешает положить скалярный потенциалA0 =
0 и работать в дальнейшем только с поперечным вектор-потенциалом.

Задание конечной фиксированной формы резонатора нарушает простран-
ственную трансляционную симметрию, а также ограничивает вращательную
симметрию. Следовательно, на смену традиционному разложению потенциала
электромагнитного поля в пространственный интеграл Фурье приходит разло-
жение по собственным функциям области резонатора в заданных граничных
условиях. Временная трансляционная симметрия сохраняется, поэтому зави-
симость потенциала от времени будем по-прежнему представлять в виде вре-
менного интеграла Фурье.
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2.1.1. Резонатор-отрезок

Осуществим операторное квантование свободного электромагнитного поля
в резонаторе-отрезке D = (0, Lx), ограниченном двумя непроницаемыми для
поля пластинами (см. рис 3). Размеры пластин считаем сколь угодно большими
по сравнению с длиной отрезкаLy, Lz ≫ Lx, что даёт эффективно бесконечную
площадь пластин S ≫ L2

x и объём резонатора V = LxLyLz = LxS.

Рисунок 3 — Одномерный резонатор с идеально проводящими стенками.

Определим, какие возникают ограничения на компоненты вектор-потенциала
A(t, x), зависящего в одномерной модели только от одной пространственной
координаты и времени. Во-первых, нетрудно убедиться, что из калибровочного
условия поперечности и из отсутствия свободных зарядов следует ортогональ-
ность вектор-потенциала к оси резонатора:

∇ · E = ∂x∂tAx(t, x) + ∂y∂tAy(t, x) + ∂z∂tAz(t, x) = 0 ⇒ ∂t∂xAx(t, x) = 0,

∂t∂xAx(t, x) = 0 ⇒ Ax(t, x) = c0 + c1t+ c2x ⇒ Ex(t, x) = c1.

В изолированном электрически нейтральном резонаторе c1 = 0, так как без
поверхностной плотности заряда не получится создать пространственно одно-
родное электрическое поле, направленное вдоль осиOx. Тогда без ограничения
общности положим Ax(t, x) = 0, потому что слагаемые c0+ c2x не дают вклада
в физические характеристики электромагнитного поля (в векторы E,B).

Во-вторых, требование идеально проводящих стенок n × E = 0 в точках
x = 0, Lx подчиняет две оставшиеся компоненты Ay, Az однородным гранич-
ным условиям Дирихле:

при x = 0, Lx : E ∥ n ⇔ ∂tA⊥ = 0 ⇐ Ay = 0, Az = 0.

Собственные функции отрезка с однородными граничными условиями уже
были использованы ранее (см. раздел 1.3.). Взятие их в качестве базиса для про-
странственной части потенциала приводит к разложению компонент Ay(t, x),
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Az(t, x) в ряд Фурье по синусам— профилям стоячих волн. При наличии сдви-
говой симметрии во времени, потенциал раскладывается и в интеграл Фурье по
переменной t:

Ai(t, x) =

√
2

V

∞∑
n=1

+∞∫
−∞

dω Ãi(ω, kn) sin(knx) e
iωt, kn =

πn

Lx
, i = y, z.

Вещественность потенциала электромагнитного поля накладывает условие на
Фурье-образ: (Ai(ω, kn))

∗ = Ai(−ω, kn).
Подстановка данного разложения в свободные уравнения движения поля

□Ai = 0 приводит к дисперсионному соотношению ω2 = k2n, которому должно
подчиняться произвольное нетривиальное решение полевых уравнений. Обес-
печить автоматическое выполнение дисперсионного соотношения удобно с по-
мощью выделения дельта-функции общим множителем в Фурье-образе поля
Ãi(ω, kn) = Ai(ω, kn) δ(ω

2 − k2n).
Далее, воспользуемся фильтрующим свойством дельта-функции сложного

аргумента и снимем временной интеграл Фурье в разложении потенциала элек-
тромагнитного поля:

Ai(t, x) =

√
2

V

∞∑
n=1

+∞∫
−∞

dω Ai(ω, kn) sin(knx) e
iωt δ(ω2 − k2n) =

=

√
2

V

∞∑
n=1

(
Ai(+ωn, kn) e

+iωnt + Ai(−ωn, kn) e
−iωnt

) sin(knx)

2ωn

Согласно процедуре операторного квантования, наделим амплитуды разложе-
ния свойствами лестничных операторов обыкновенного гармонического осцил-
лятора.

a±i,n :=
Ai(±ωn, kn)√

2ωn

,
(
a±i,n
)∗

= a∓i,n,
[
a−i,n, a

+
j,m

]
= δijδnm

⇒ Ai(t, x) = A+
i (t, x) + A−

i (t, x), A±
i (t, x) =

√
2

V

∞∑
n=1

a±i,n sin(knx)
e±iωnt

√
2ωn

(31)

Каноническая нормировка включает множитель
√
2ωn в квантовые амплиту-

ды, благодаря чему оператор энергии системы будет такой квадратичной фор-
мой по a±i,n, которая позволит интерпретировать a

+(−)
i,n , как операторы рождения

(уничтожения) фотона линейной поляризации i с энергией ωn.

H =

∫∫
dydz

∫ Lx

0

E2 +B2

2
dx =

∞∑
n=1

ωn

2

∑
i=y,z

(
a+i,na

−
i,n + a−i,na

+
i,n

)
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2.1.2. Резонатор-параллелепипед

Операторное квантование свободного электромагнитного поля в резонаторе-
параллелепипеде с идеально проводящими стенками осуществляется аналогич-
но предыдущем разделу 2.1.1. Отличны лишь собственныефункции области, по
которым ведётся разложение пространственной части вектор-потенциала.

Граничное условие на вектор-потенциал в идеально проводящем параллеле-
пипеде можно получить из граничного условия на электрическое поле. Послед-
нее не должно иметь тангенциальной составляющей на поверхности идеально
проводящих стенок:E(t, r)×n(r) = 0, r ∈ ∂D. Так как в зафиксированной ка-
либровке Кулона при отсутствии свободных зарядов E = −∂tA, это граничное
условие, не зависящее от времени, в точности перекладывается и на вектор-
потенциал:A(t, r)× n(r) = 0, r ∈ ∂D.

Следовательно, система собственныхфункций для вектор-потенциала в иде-
ально проводящем параллелепипеде имеет тот же вид Aλ

npq(r) ≡ Eλ
npq(r) с ин-

дексом поляризации λ ∈ {TM,TE}, что и система СФ для электрического по-
ля, использованная в разделе 1.4. Для операторного квантования удобно, что-
бы собственные функции, по которым будет раскладываться вектор-потенциал,
были нормированы на единицу, о чём мы уже позаботились ранее.

Используя обозначенные собственные функции, выполним разложение век-
тор-потенциала в рядФурье по пространственной переменной и в интегралФу-
рье по времени. Аналогично квантованиюна отрезке запишем произвольное ре-
шение с помощью дельта-функции, чьим аргументом является дисперсионное
соотношение, диктуемое свободными полевыми уравнениями. Далее снимем
дельта-функцией временной интеграл Фурье и выделим амплитуды в канони-
ческой нормировке. Тогда поле будет представлено в следующем виде:

A(t, r) = A+(t, r) +A−(t, r), A±(t, r) =
1√
V

∑
λ,npq

aλ±npqAλ
npq(r)

e±iωnpqt√
2ωnpq

, (32)

(
aλ±npq

)∗
= aλ∓npq,

[
aλ−npq, a

λ′+
n′p′q′

]
= δλλ′δnn′δpp′δqq′

Для компактности здесь введена запись
∑

λ,npq, которую следуем понимать,
как суммирование по обеим поляризациям λ ∈ {TM,TE} и по всем доступным
наборам индексов npq в случае каждой поляризации (разрешённые наборы ин-
дексов несколько отличаются у ТМ- и ТЕ-подсистем собственных функций).
Энергия поля, благодаря ортонормированности базисных функций Aλ

npq и ка-
нонической нормировке

√
2ωnpq, a±λ

npq, складывается из энергий каждой моды:

H =
∑
λ,npq

ωnpq

2

(
aλ+npqa

λ−
npq + aλ−npqa

λ+
npq

)
.
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2.1.3. Состояния свободного поля

В предыдущих разделах 2.1.1. и 2.1.2. было проведено операторное кванто-
вание свободного электромагнитного поля, в ходе которого были определены
лестничные полевые операторы. Данные операторы действуют в гильбертовом
пространстве векторов состояний поля, в качестве базиса которого можно вы-
брать базис чисел заполнения:

∃ |0⟩ : aλ−n |0⟩ = 0 ∀λ, n. ∀ν ∈ N0 :
∣∣νλn〉 := (

aλ+n
)ν

√
ν!

|0⟩

⇒
〈
νλn

∣∣∣ν ′λn〉 = δνν′, aλ+n
∣∣νλn〉 = √

ν + 1
∣∣νλn+1

〉
, aλ−n

∣∣νλn〉 = √
ν
∣∣νλn−1

〉
.

При конструировании чистого состояния в виде прямого произведения базис-
ных векторов |pure⟩ =

⊕
λ,n

∣∣νλn〉 необходимо учитывать условие Фока, делаю-
щее базис счётным

∑
λ,n ν

λ
n < ∞.

Любое чистое состояние по своим свойствам далеко от классического по-
ля. Например, в чистом состоянии среднее значение поля равно нулю в любой
точке в любой момент времени: ⟨pure|A(t, r)|pure⟩ = 0. Более близким кванто-
вым аналогом классического поля служит смешанное когерентное состояние,
характеризующееся параметром ξ:

∀ξ ∈ C :
∣∣ξλn〉 := e−

|ξ|2
2 eξa

λ+
n |0⟩ =

∞∑
ν=0

ξν√
ν!

∣∣νλn〉
⇒

〈
ξλn
∣∣ξλn〉 = 1, aλ−n

∣∣ξλn〉 = ξ
∣∣ξλn〉 , 〈

ξλn
∣∣aλ+n aλ−n

∣∣ξλn〉 = |ξ|2.

Из последнего свойства становится очевиден смысл величины |ξ|2, равной сред-
нему числу фотонов в когерентном состоянии.

2.2. Самодействующее электромагнитное поле
Имея под рукой проквантованное свободное электромагнитное поле в резо-

натореD, перейдём к учёту эффективного самодействия поля по теории возму-
щений. Добавим вклад Эйлера-Гейзенберга в лагранжиан (обобщая коэффици-
ент 7

4 → β):
L = L0 + :LEH:, LEH = κ

(
F2 + βG2

)
.

При этом мы используем нормальное упорядочивание лагранжиана самодей-
ствия, чтобы при вычислении матричных элементов не сталкиваться с расхо-
димостями типа «пузырь».

Согласно теории возмущений, удельная вероятностьwfi перехода между дву-
мя свободными состояниями |i⟩ → |f⟩ в единице фазового объёма в единицу
времени даётся квадратом модуля матричного элемента Sfi матрицы S:

wfi = |Sfi|2dΦ, Sfi = ⟨f |S|i⟩ .

31



В наших расчётах векторы начального и конечного состояний будут ортого-
нальны ⟨f |i⟩ = 0. Сама S-матрица представима в виде хронологической экспо-
ненты от действия:

S = Texp

(
i

∫
:LEH: d

4x

)
= 1 + i

∫
T (:LEH(x):) d

4x+ . . . = 1 + T,

⟨f |S|i⟩ = ����*0
⟨f |i⟩+ ⟨f |T|i⟩ = Tfi = i

∫
⟨f |:LEH(x):|i⟩ d4x+O

(
κ2
)
.

Как уже упоминалось, эффект самодействия крайне мал в лабораторных
условиях (κB2 < 10−24), поэтому теория возмущений применима, и достаточно
ограничиться её первым порядком. Вычисления в первом порядке автоматиче-
ски не содержат расходимостей, что удобно.

Определённая тонкость заключается в том, что в стандартной формулиров-
ке теория возмущений обосновывается для начальных и конечных состояний, в
которых частицы разнесены на пространственную бесконечность. Бесконечное
удаление волновых пакетов друг от друга оправдывает использование свобод-
ных векторов состояний. Однако в нашем случае поле всегда сосредоточено в
резонаторе конечных размеров, и может показаться, что не вполне корректно
в какой-то момент самодействие «выключать». На помощь приходит тот факт,
что собственные функции изучаемых резонаторов (отрезка и параллелепипеда)
являются стоячими гармоническими волнами и раскладываются в сумму плос-
ких волн. Можно разложить начальный и конечный векторы в линейную ком-
бинацию состояний, отвечающих плоским волнам |i⟩ , |f⟩ =

∑2d

j=1 |±kj⟩, где
d — размерность пространства, и вычислять матричный элемент между век-
торами плоских волн, так как для работы с последними теория возмущений
строго обоснована. Результат вычисления что со стоячими волнами, что с соот-
ветствующей комбинацией плоских волн будет одинаков, потому что векторы
состояний входят в матричный элемент линейно (в виде «обкладок»).

Приступим к вычислению элемента Tfi. Сначала перейдём к трёхмерным
обозначениям, свободноменяя порядок бозонных полей внутри нормально упо-
рядоченного лагранжиана самодействия.

F = F µνFµν = 2(B2 − E2), G = F µνF̃µν = −4BE,

LEH = κ
(
F2 + βG2

)
= 4κ

(
E4 − 2B2E2 +B4 + 4β(BE)2

)
.

Значит, матричный элемент будет иметь следующую структуру:

Tfi = 4iκ

+∞∫
−∞

dt

∫
D

dr ⟨f | :E4 − 2B2E2 +B4 + 4β(BE)2: |i⟩ . (33)

Следующим этапом является расчёт нормальных спариваний лестничных опе-
раторов с полями B,E, выбор конкретных состояний |i⟩ , |f⟩ и интегрирование
результата спариваний по резонатору, чем мы и займёмся в следующих разде-
лах.
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2.2.1. Процесс 3 в 1

В надежде выяснить причину отсутствия третьей гармоники, начнём с наи-
более простого и показательного примера—одномодового возбуждения резона-
тора-отрезка.

В классической части работы выбиралась мода накачки с индексом n и про-
водился поиск сигнальной моды с индексом 3n, см. раздел 1.3.1. На квантовом
уровне законом сохранения энергии разрешён процесс с одиночнымифотонами
3ωn → ω3n. Среди трёх линейно поляризованных фотонов в начальном состо-
янии в общем случае присутствуют две поляризации i, j ∈ {y, z}, выходной
фотон также имеет некоторую поляризацию l ∈ {y, z}. Поэтому выберем сле-
дующие начальный и конечный векторы состояний:

|i⟩ =
∣∣2in〉⊗ ∣∣1jn〉 = (a+i,n)2a+j,n |0⟩ , |f⟩ =

∣∣1l3n〉 = a+l,3n |0⟩ ,

где операторы рождения a±i,n были введены при квантовании свободного поля
на отрезке в разделе 2.1.1.

Для вычисления по формуле (33) требуется знание нормальных спариваний
лестничных операторов a±i,n с компонентами электрического и магнитного по-
лей Ei, Bi, i ∈ {y, z}. Рассчитаем их, используя операторное разложение (31)
вектор-потенциала на отрезке и спаривание самих лестничных операторов:

a−i,n a
+
j,m =

[
a−i,n, a

+
j,m

]
= δijδnm

a−i,nEj(t, x) =a−
i,n ∂0Aj(t,x)=

√
2
V

∞∑
m=1

sin(kmx)√
2ωm

(
a−

i,na+
j,m (+iωm) e+iωmt + a−

i,na−
j,m (−iωm) e−iωmt

)

a−i,nEj(t, x) = δij i

√
ωn

V
sin(knx) e

iωnt =
(
Ej(t, x) a

+
i,n

)∗
a−z,nBy(t, x) = −a−z,n ∂xAz(t, x) = −

√
ωn

V
cos(knx) e

iωnt = −a−y,nBz(t, x)

Приступим к вычислению (33), разбивая его на этапы по количеству слага-
емых в подынтегральном выражении.

Tfi = 4iκS

+∞∫
−∞

dt

Lx∫
0

dx ⟨0|a−l,3n:E
4 − 2B2E2 +B4 + 4β(BE)2:

(
a+i,n
)2
a+j,n|0⟩ =

=
〈
E4
〉
− 2

〈
B2E2

〉
+
〈
B4
〉
+ 4β

〈
(BE)2

〉
= (34)

=
{〈

E4
y

〉
+ 2

〈
E2

yE
2
z

〉
+
〈
E4

z

〉}
− 2

{〈
B2

yE
2
y

〉
+
〈
B2

yE
2
z

〉
+
〈
B2

zE
2
y

〉
+
〈
B2

zE
2
z

〉}
+
{〈

B4
y

〉
+ 2

〈
B2

yB
2
z

〉
+
〈
B4

z

〉}
+ 4β

{〈
B2

yE
2
y

〉
+ 2 ⟨ByEyBzEz⟩+

〈
B2

zE
2
z

〉}
,

где обозначено усреднение ⟨F ⟩ := 4iκS

+∞∫
−∞

dt

Lx∫
0

dx ⟨0|a−l,3n :F :
(
a+i,n
)2
a+j,n|0⟩ .
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Как видим, образовалось 13 слагаемых. Найдём явно значение одного из них:

〈
E4

y

〉
= 4iκS

+∞∫
−∞

dt

Lx∫
0

dx ⟨0|a−l,3n :EyEyEyEy: a
+
i,na

+
i,na

+
j,n|0⟩ =

= 4iκS

+∞∫
−∞

dt

Lx∫
0

dx 4!

(
+iδly

√
ω3n

V
sin(k3nx) e

+iω3nt

)
×

×
(
−iδiy

√
ωn

V
sin(knx) e

−iωnt

)2(
−iδjy

√
ωn

V
sin(knx) e

−iωnt

)
=

= 4iκS 4! δiyδjyδly i(−i)3
√

ω3nω3
n

V 4

+∞∫
−∞

ei(ω3n−3ωn)tdt

︸ ︷︷ ︸
=2πδ(0)

Lx∫
0

sin(k3nx) sin
3(knx)dx︸ ︷︷ ︸

=−Lx/8

=

= 2πδ(0)
12
√
3iπ2n2κ

L3
xS

δiyδjyδly

Данный расчёт показывает, что традиционно возникает δ-функция, выражаю-
щая закон сохранения энергии в процессе, а четыре собственные функции по-
сле интегрирования по x собираются в геометрический множитель. Отдельно
стоит обратить внимание на комбинаторный коэффициент 4! , возникающий в
силу неразличимости полей в произведении :E4

y :. При усреднении, например,〈
B2

yE
2
y

〉
комбинаторный множитель составит 2!·2! = 4, а член ⟨ByEyBzEz⟩ даст

единичный комбинаторный фактор.
Опуская подробное вычисление каждого из 12-ти оставшихся слагаемых,

приведём окончательный ответ:

Tfi =
〈
E4
〉
− 2

〈
B2E2

〉
+
〈
B4
〉︸ ︷︷ ︸

=0

+4β
〈
(BE)2

〉︸ ︷︷ ︸
=0

= 0,

в котором первые 3 члена в сумме дают ноль, как и последнее слагаемое. Таким
образом, равенство нулю матричного элемента (а значит, и отсутствие генера-
ции третьей гармоники) обеспечивается усреднением квадратов инвариантов
электромагнитного поля независимо друг от друга. Множитель, связанный с
поляризациями начальных и конечного фотонов, оказывается вообще говоря
ненулевым.

2.2.2. Процесс 2+1 в 1

С целью объяснить подавление следующей по привлекательности комбина-
ционной гармоники 2ω1+ω2 в резонаторе-отрезке, опишем на квантовом уровне
процесс двухмодового возбуждения данного резонатора. Будем моделировать
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конфигурацию мод накачки с индексами n и p, подобно рассмотренной в клас-
сическом разделе 1.3.2. В отличие от одномодовой схемы, теперь все участву-
ющие в процессе 2ωn + ωp → ω2n+p фотоны могут оказаться различны. Это
требует в общем случае четыре поляризационных индекса i, j, l, s ∈ {y, z} для
лестничных операторов, порождающих начальный и конечный векторы состо-
яний:

|i⟩ =
∣∣1in〉⊗ ∣∣1jn〉⊗ ∣∣1lp〉 = a+i,na

+
j,na

+
l,p |0⟩ , |f⟩ =

∣∣1s2n+p

〉
= a+s,2n+p |0⟩ .

Так как ближайшее вычисление отличается от выкладок предыдущего раз-
дела только векторами состояний, нет нужды вновь находить спаривания лест-
ничных операторов с электрическим и магнитным полями. Общая формула (33)
разбивается на слагаемые таким же образом (34), как в одномодовом режиме,
за исключением определения усреднения:

Tfi = 4iκS

+∞∫
−∞

dt

Lx∫
0

dx ⟨0|a−s,2n+p:E
4 − 2B2E2 +B4 + 4β(BE)2:a+i,na

+
j,na

+
l,p|0⟩ =

=
{〈

E4
y

〉
+ 2

〈
E2

yE
2
z

〉
+
〈
E4

z

〉}
− 2

{〈
B2

yE
2
y

〉
+
〈
B2

yE
2
z

〉
+
〈
B2

zE
2
y

〉
+
〈
B2

zE
2
z

〉}
+
{〈

B4
y

〉
+ 2

〈
B2

yB
2
z

〉
+
〈
B4

z

〉}
+ 4β

{〈
B2

yE
2
y

〉
+ 2 ⟨ByEyBzEz⟩+

〈
B2

zE
2
z

〉}
,

где отличается только ⟨F ⟩ := 4iκS

+∞∫
−∞

dt

Lx∫
0

dx ⟨0|a−s,2n+p :F : a+i,na
+
j,na

+
l,p|0⟩ .

Для разнообразия, вычислим на этот раз слагаемое другого типа, содержащее
всевозможные спаривания:

⟨ByBzEyEz⟩ = 4iκS

+∞∫
−∞

dt

Lx∫
0

dx
{
⟨0|a−s,2n+p :ByBzEyEz: a

+
i,na

+
j,na

+
l,p|0⟩ +

+ ⟨0|a−s,2n+p :ByBzEyEz: a
+
i,na

+
j,na

+
l,p|0⟩ + ⟨0|a−s,2n+p :ByBzEyEz: a

+
i,na

+
j,na

+
l,p|0⟩ +

+ ⟨0|a−s,2n+p :ByBzEyEz: a
+
i,na

+
j,na

+
l,p|0⟩ + ещё 16 вариантов спариваний

}
=

= 4iκS

√
ω2n+pω2

nωp

V 4

+∞∫
−∞

ei(ω2n+p−2ωn−ωp)tdt

︸ ︷︷ ︸
=2πδ(0)

Lx∫
0

dx

{
cos(k2n+px) cos(kpx) sin

2(knx)︸ ︷︷ ︸∫
dx=−Lx/8

×

×
[
−δszδly(−i)2(1− δij)− δsyδlz(−i)2(1− δij)

]
+ sin(k2n+px) sin(kpx) cos

2(knx)︸ ︷︷ ︸∫
dx=+Lx/8

×
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×
[
i(−i)δsyδlz(δij − 1) + i(−i)δszδly(δij − 1)

]
+ cos(k2n+px) sin(kpx) cos(knx) sin(kpx)︸ ︷︷ ︸∫

dx=−Lx/8

×

×
[
−δsz(−i)2δlz2δiyδjy − (−i)2(1− δls)(1− δij) + δsy(−i)2δly2(−δiz)δjz

]
+

+
[
−δsyi(−i)δly2δizδjz − i(−i)(1− δls)(1− δij) + δszi(−i)δlz2(−δiy)δjy

]
×

× sin(k2n+px) cos(kpx) cos(knx) sin(kpx)︸ ︷︷ ︸∫
dx=+Lx/8

}
= 2πδ(0)

2iπ2κ

L3
xS

√
pn2(2n+p)

[
δlsδij(δis−1)−(1−δls)(1−δij)

]
.

Данное вычисление не примечательно комбинаторными множителями, зато де-
монстрирует максимальное разнообразие возникающих спариваний, приводя-
щее к нетривиальному поляризационному множителю в последних квадратных
скобках.

Опуская подобный расчёт остальных кусочков матричного элемента, выпи-
шем финальный результат:

Tfi =
〈
E4
〉
− 2

〈
B2E2

〉
+
〈
B4
〉︸ ︷︷ ︸

=0

+4β
〈
(BE)2

〉︸ ︷︷ ︸
=0

= 0.

В полной аналогии с одномодовым возбуждением резонатора-отрезка, матрич-
ный элемент состоит из двух нулевых вкладов от усреднения квадратов инва-
риантов электромагнитного поля. Значит, генерация комбинационной частоты
со знаком «+» (2ω1+ω2) также запрещена на квантовом уровне, как и рождение
фотонов утроенной частоты.

2.2.3. Когерентная генерация

Перед подходом, основанным на квантовой теории поля, была поставлена
ещё одна задача: объяснить генерацию комбинационной частоты со знаком «−»
в параллелепипеде, предсказываемую классической теорией. Как уже упоми-
налось, на первый взгляд она выглядит противоестественно, потому что соот-
ветствующий процесс с единичными фотонами запрещён законом сохранения
энергии 2ω011 + ω110 −̸→ ω130.

Здесь стоит вспомнить, что чистые однофотонные состояния являются дале-
ко не лучшими квантовыми аналогами классических волн. При квантовом опи-
сании генерации гармоник на отрезке однофотонные векторы состояний были
уместны, так как сами процессы были разрешены законом сохранения энергии,
и стояла задача выяснить, что ещё может их запрещать. Теперь же мы сталкива-
емся с необходимостью объяснить классически разрешённый процесс, который
невозможен на уровне единичных фотонов.

Возьмём более точный аналог классической волны — когерентное состоя-
ние. Оно удовлетворительно аппроксимирует моду накачки, чья амплитуда ве-
лика по квантовым меркам. Для описания генерируемой сигнальной моды мы
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по-прежнему обратимся к однофотонному состоянию, это заметно упростит
вычисления. Итак, будем считать, что две когерентные моды накачки TM110
и ТЕ011 рождают сигнальные фотоны ТМ130, не теряя при этом энергию:

|i⟩ =
∣∣ξTE011〉⊗ ∣∣ηTM110〉 = e−

|ξ|2+|η|2
2

∞∑
i,j=0

ξiηj

i!j!

(
aTE+011

)i(
aTM+
110

)j |0⟩ ,
|f⟩ =

∣∣ξTE011〉⊗ ∣∣ηTM110〉⊗ ∣∣1TM130〉 = |i⟩ ⊗
∣∣1TM130〉 = aTM+

130 |i⟩ .

Квадраты модулей параметров ξ, η дают средние числа фотонов в модах накач-
ки, и будут использоваться в дальнейшем для связи квантового предсказания с
классическим.

Спаривания лестничных операторов aλ±npq с электрическим и магнитным по-
лями E,B в параллелепипеде рассчитываются аналогично резонатору-отрезку
с использованием операторного разложения вектор-потенциала (32):

aλ−npq E(t, r) = i

√
ωnpq

2V
Aλ

npq(r) e
iωnpqt =

(
E(t, r) aλ+npq

)∗
,

aλ−npq B(t, r) =
1√

2ωnpqV
∇×Aλ

npq(r) e
iωnpqt = B(t, r) aλ+npq.

Используя данные спаривания, приступим к вычислению матричного эле-
мента процесса по формуле (33):

Tfi = 4iκ

+∞∫
−∞

dt

∫
D

dr ⟨f | :E4 − 2B2E2 +B4 + 4β(BE)2: |i⟩ =
〈
E4
〉
− 2

〈
B2E2

〉
+

+
〈
B4
〉
+ 4β

〈
(BE)2

〉
, где обозначено ⟨F ⟩ := 4iκ e−|ξ|2−|η|2

∞∑
i,j,k,l=0

ξiηj

i!j!
×

× (ξ∗)k(η∗)l

k!l!

+∞∫
−∞

dt

∫
D

dr ⟨0|aTM−
130

(
aTE−011

)k(
aTM−
110

)l
:F :
(
aTE+011

)i(
aTM+
110

)j|0⟩ .
Несмотря на громоздкое четырёхкратное суммирование, возникшее из раз-

ложения векторов когерентных состояний в матричном элементе, нахождение
кусочков

〈
E4
〉
,
〈
B4
〉
,
〈
B2E2

〉
и
〈
(BE)2

〉
менее трудоёмко, так как поляризации

всех фотонов фиксированы. Рассчитаем член
〈
E4
〉
, как самый компактный в

записи:

⟨0|aTM−
130

(
aTE−011

)k(
aTM−
110

)l
:(E · E)(E · E): aTE+011

(
aTE+011

)i−1(
aTM+
110

)j|0⟩ +

+ ⟨0|aTM−
130

(
aTE−011

)k(
aTM−
110

)l
:(E · E)(E · E): aTE+011

(
aTE+011

)i−1(
aTM+
110

)j|0⟩ =

= ei(ω130−2ω011+ω110)t︸ ︷︷ ︸∫
dt=2πδ(0)

(+i)2(−i)2
√

ω130ω2
011ω110

24V 4
8li(i− 1) (l − 1)!(i− 2)!δl−1,jδk,i−2 ×
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×
[
(ATM

130 · ATM
110)(ATE

011 · ATE
011)︸ ︷︷ ︸∫

dr=−V/2

+ 2 (ATM
130 · ATE

011)(ATM
110 · ATE

011)︸ ︷︷ ︸∫
dr=0

]
⇒

〈
E4
〉
= 2πδ(0) 4κ

√
ω130ω2

011ω110

iV
e−|ξ|2−|η|2

∞∑
i,j,k,l=0

ξiηj

i!j!

(ξ∗)k(η∗)l

k!l!
l!i! δl−1,jδk,i−2 =

= 2πδ(0)
4κξ2η∗

iV

√
ω130ω2

011ω110

�����������������:1e−|ξ|2−|η|2
∞∑

j,k=0

|ξ|2k|η|2j

k!j!

.

В данном расчёте мы сразу оставили только те варианты спариваний, которые
дают «правильные» экспоненты, собирающиеся под временным интегралом в
2πδ(0) (все прочие спаривания дают нулевой вклад). Таким образом, на фоне
когерентных мод накачки идут однофотонные процессы 2 → 2, разрешённые
законом сохранения энергии. При этом необходимы обе моды ТМ110 и ТЕ011,
одномодовая генерация окажется запрещена в согласии с классическим иссле-
дованием.

Комбинаторный множитель 8li(i− 1) теперь зависит от показателей l, i,
так как для спариваний выбирается лишь один или два лестничных операто-
ра из l или i штук соответственно. Подчёркнутое выражение образуется, когда
оставшиеся l−1 и i−2 операторов рождения спариваются уже не с полямиE, но
с операторами aλ−npq из бра-вектора (по свойству ⟨0|(a−)n(a+)m|0⟩ = n!δnm). Впо-
следствии, эти символы Кронекера снимают две суммы из четырёх, а лишние
факториалы сокращаются. Существенно, что при перенумерации оставшихся
индексов суммирования за знак суммы выносится фактор ξ2η∗, который при
взятии квадрата модуля даст физическую величину — произведение средних
количеств фотонов. Наконец, базисные вектор-функции Aλ

npq заменяют собой
поля E в скалярных произведениях и образуют при интегрировании по парал-
лелепипеду геометрический множитель.

Подобным образом вычисляются вклады
〈
B4
〉
,
〈
B2E2

〉
и
〈
(BE)2

〉
в мат-

ричный элемент. Нас интересует только результирующее выражение, притом
возведённое в квадрат по модулю:

|Tfi|2 = [2πδ(0)]2 G̃2
1

κ2|ξ|4|η|2

L10
z

, G̃2
1 =

25π4r6√
5(1+r2)

[
5 + 2

√
5− β

(√
1 + r2 +

√
2r
)2]2

,

где уже учтена настройка резонатора Lx = Ly = Lz/r при r2 =
√
5 − 2, необ-

ходимая для точного попадания на спектр ω130 = 2ω011 − ω110.
Осталось сделать последний шаг: привести квантовый расчёт к тому виду,

который можно будет сравнить с классическим предсказанием. Для этого зай-
мёмся интерпретацией квадрата модуля матричного элемента. Как упомина-
лось в предваряющем разделе 2.2., удельная вероятность процесса на единицу
фазового объёма в единицу времени даётся следующим соотношением:

wfi = |Tfi|2dΦ, где учтено ⟨f |S|i⟩ = ����*0
⟨f |i⟩+ ⟨f |T|i⟩ .

38



Мы всюду использовали спаривания лестничных операторов с электромаг-
нитным полем в целостном виде, не опуская нормировочные факторы V −1/2 и√
2ω, поэтому нам не приходится их теперь восстанавливать. Далее, разложе-

ние вектор-потенциала электромагнитного поля в ряд, а не в интеграл Фурье
делает элемент фазового объёма единичным:

dΦ = V∆kx∆ky∆kz = V
∆n

Lx

∆p

Ly

∆q

Lz
= 1, в силу того, что n, p, q ∈ N0.

Предложим интерпретацию δ-функции, возникающей в элементе матрицы
перехода. Как обычно, её аргумент выражает закон сохранения энергии в про-
цессе:

2πδ(0) = 2πδ(ω130 − 2ω011 + ω110) =

+∞∫
−∞

ei0dt ≡ T.

В случае эксперимента на ускорителе формально бесконечные пределы инте-
грала по времени заменяются на условно бесконечную длительность наблю-
дения T . Применительно к эксперименту в резонаторе правильным подходом
будет положить T = τγ, где τγ —так называемое среднее времяжизни сигналь-
ного фотона в резонаторе до его диссипации. Такая интерпретация физически
обосновывается тем, что равенство нулю аргумента δ-функции наступает при
идеально точном попадании на спектр ω130 = 2ω011 − ω110, когда сигнальная
мода не затухает. Однако настройка резонатора имеет погрешность, и усло-
вие попадания на спектр выполняется лишь с некоторой точностью, ограни-
ченной добротностью резонатора на сигнальной частоте ω130. Таким образом,
для эксперимента в резонаторе имеем следующую физическую интерпретацию
δ-функции:

2πδ(0) = τγ(ω130) =
Q

ω130
→ ∞ при выключении диссипации.

С учётом вышеприведённых рассуждений об элементе фазового объёма и
точности настройки резонатора квантовая теория предсказывает1 среднее рав-
новесное количество сигнальных фотонов:

N quant
sig =

Q2

ω2
· G̃2

1

κ2|ξ|4|η|2

L10
z

· 1 = G2
1

κ2Q2|ξ|4|η|2

L8
z

, G2
1 =

G̃2
1

10π2r2
.

1Интересно провести параллель с законом действующих масс в химической кинетике: скорость реакции про-
порциональна концентрациям реагентов в степенях, равных соответствующим стехиометрическим коэффициен-
там. В нашем случае в процессе 2ω011+ω110 → ω130 в роли концентраций выступают средние количества «реаги-
рующих» фотоновNTE

011 = |ξ|2 иNTM
110 = |η|2, и вероятность wfi рождения сигнальных фотонов в единицу времени

оказывается пропорциональной |ξ|4 =
(
NTE

011

)2 и |η|2 =
(
NTM

110

)1, при том что для элементарного акта «реакции»
требуется 2 ТЕ-фотона и 1 ТМ-фотон.
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Установим связь между средними количествами фотонов в модах накачки
и их классическими амплитудами, которые полагались равными друг другу в
первой части работы:

|ξ|2 = NTE
011 =

∫
D

E2
011 +B2

011

2ω011
dr =

B2
0V

2ω011
=

B2
0L

4
z

2πr2
√
1 + r2

,

|η|2 = NTM
110 =

∫
D

E2
110 +B2

110

2ω110
dr =

B2
0V

2ω110
=

B2
0L

4
z

2
√
2πr3

.

Подставляя найденные |ξ|2 и |η|2 в формулу для N quant
sig , получаем предсказание

квантовой теории поля в форме, удобной для сравнения с классическим пред-
сказанием (30):

N quant
sig =

G2
1

23
√
2π3r7(1 + r2)

· κ2Q2B6
0L

4
z, (35)

N class
sig =

G2
0

2π10
5
2r7

· κ2Q2B6
0L

4
z.

Как классический, так и квантовый расчёты приводят к одинаковой зави-
симости от параметров модели Nsig ∝ κ2Q2B6

0L
4
z. Квантовый геометрический

коэффициент G2
1 на первый взгляд даёт множитель, непохожий на классиче-

ский геометрический фактор (29). Однако подробный анализ показывает, что
с учётом всех остальных множителей после явной подстановки r2 =

√
5 − 2

коэффициенты в точности совпадают:

G2
1

23
√
2π3r7(1 + r2)

=
2
[
5 + 2

√
5−

(
1 +

√
5
)
β
]2

5
√
10 π

(√
5− 2

) 3
2
(√

5− 1
)2 =

G2
0

2π10
5
2r7

≃ 3.333,

благодаря чему тождественны оказываются классическое (30) и квантовое (35)
предсказания среднего равновесного количества сигнальных фотонов:

N class
sig = N quant

sig =: Nsig ≃ 3.333 · κ2Q2B6
0L

4
z. (36)
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ВЫВОДЫ
В работе была изучена генерация высших гармоник в простейших моделях

резонаторов, обусловленная самодействием электромагнитного поля в нели-
нейной электродинамикеЭйлера-Гейзенберга. Сначала был развит подход вфор-
мализме классической теории поля в первом порядке теории возмущений, ос-
нованный на методе разделения переменных при решении краевой задачи в ма-
тематической физике. Его применение показало, что из сигнальных гармоник,
возникающих вследствие кубичного смешивания частот двух мод накачки, ре-
зонансному усилению не поддаются третьи гармоники 3ω1, 3ω2, а также следу-
ющие за ними по величине комбинационные частоты 2ω1+ω2 и 2ω2+ω1. Тем не
менее была предсказана возможность генерации комбинационной гармоники с
частотой 2ω1 − ω2 в параллелепипеде.

Классическое описание1 оставило после себя два нерешённых вопроса: в
чём причина подавления самых высших сигнальных гармоник; и каким обра-
зом согласуется генерация гармоники 2ω1 − ω2 с законом сохранения энергии
на микроскопическом уровне? Ответы на эти вопросы были найдены в форма-
лизме квантовой теории поля.

Квантовое описание генерации гармоник в резонаторах основывалось на
операторном квантовании свободного электромагнитного поля в ограниченной
области пространства иформализме S-матрицы.Непосредственный расчёт мат-
ричных элементов процессов в первом порядке теории возмущений показал,
что

• в эффективной теории Эйлера-Гейзенберга резонансная генерация выс-
ших частот на уровне единичных фотонов запрещена, и причина этого
запрета кроется во внутренней векторной структуре квадратов инвари-
антов электромагнитного поля, так как

〈
F2
〉
= 0 и независимо

〈
G2
〉
= 0;

• возможна генерация комбинационной частоты со знаком «−» на фоне ко-
герентных мод накачки

∣∣ξTE011〉 и ∣∣ηTM110〉, позволяющих протекать разрешён-
ному элементарному процессу 2ω011 −→ ω110 + ω130;

• количественные предсказания среднего равновесного числа сигнальных
фотонов, сделанные в рамках классического и квантового описаний, сов-
падают друг с другом в точности, что вполне ожидаемо, так как в данном
исследовании оба подхода математически сводятся к вычислению одних
и тех же интегралов, только в разной последовательности и с разными
множителями.

1См. также Kopchinskii и Satunin [30]
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ЗАКЛЮЧЕНИЕ
Практическая значимость данной работы заключается в относительно на-

дёжной (полученной двумя идейно различными путями) оценке равновесной
энергии сигнальной моды:

Nsig ≃ 3.333 · κ2Q2B6
0L

4
z ≃ 55 фотонов,

при довольно требовательных, но уже реализуемых на сегодняшний день лабо-
раторных условиях: добротность прямоугольного резонатора Q = 1010 (сверх-
проводящая ниобиевая полость [28]), амплитуда магнитного поля в каждой из
мод накачки B0 = 0.1 Тл (в сумме не превышает критическую индукцию по-
ля для ниобия 0.2 Тл), длина одной из сторон параллелепипеда Lz = 20 см,
геометрическое соотношение сторон Lx = Ly = Lz/r, где r2 =

√
5− 2.

Стоит отметить, что как для реализации перечисленных условий, так и для
подавления теплового фона потребуется экстремальное охлаждение резонатора
до температур T ≲ 10−2 ÷ 10−1 K. Перспективой развития данного исследова-
ния является получение ограничения на требуемую температуру охлаждения, а
также исследование вклада кубичной нелинейности в сверхпроводящих стенках
резонатора. Данная нелинейность оказывается существенной при амплитудах
мод накачки, близких к критическим, и так же порождает высшие гармоники
3ω1, 2ω1±ω2. Для подавления шумов от стенок может потребоваться ещё более
сильное охлаждение резонатора, затруднительное при столь энергичных модах
накачки.

С другой стороны, малое количество сигнальных фотонов, порождённых
нелинейностью Эйлера-Гейзенберга, может оказаться полезно для нужд поис-
ка новой физики в скалярном секторе. Если предполагаемый вклад в эффек-
тивный лагранжиан от взаимодействия электромагнитного поля с аксионами и
аксионоподобными частицами имеет вид C1F2+C2G2, то можно использовать
полученную оценку (36), как необходимый порог, который должно превышать
число сигнальных фотонов от новой физики при её поиске в эксперименте с
резонатором.
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